El sitio web de la UCLM utiliza cookies propias y de terceros con fines técnicos y de análisis, pero no recaba ni cede datos de carácter personal de los usuarios. Sin embargo, puede haber enlaces a sitios web de terceros, con políticas de cookies distintas a la de la UCLM, que usted podrá aceptar o no cuando acceda a ellos.

Puede obtener más información en la Política de cookies. Aceptar

Publications

 
2024

 

1. de la Cruz-Martínez, F.; Francés-Poveda, E.; North, M.; Castro-Osma, J. A.; Lara-Sánchez, A. Base-Catalyzed Highly Regioselective Synthesis of Bio-Based Hydroxyurethanes. Eur. J. Org. Chem. 2024e202400275.

Description unavailable

 

2. Martínez de Sarasa Buchaca, M.; de la Cruz-Martínez, F.; Naranjo, J.; Rodríguez, A. M.; de la Torre, M.; Castro-Osma, J. A.; Sierra, M. A.; Lara-Sánchez, A. Design of new bis(1,2,3-triazol-1-yl)methane-based nitrogen ligands: synthesis and coordination chemistry. Chem. Eur. J. 2024e202304291.

 

3. Domínguez-Jurado, E.; Ripoll, C.; Lara-Sánchez, A.; Ocaña, A.; Vitórica-Yrezábal, I. J.; Bravo, I.; Alonso-Moreno, C. Evaluation of heteroscorpionate ligands as scaffolds for the generation of ruthenium(II) metallodrugs in breast cancer therapy. J. Inorg. Biochem. 2024, 253, 112486.

 

4. Bresolí-Obach, R.; Castro-Osma, J. A.; Nonell, S.; Lara-Sánchez, A.; Martín, C. Polymers showing cluster triggered emission as potential materials in biophotonic applications. J. Photochem. Photobiol. C: Photochem. Rev. 2024, 58, 100653.

 

5. Werlinger, F.; Caballero, M. P.; Trofymchuk, O. S.; Flores, M. E.; Moreno-Villoslada, I.; de la Cruz-Martínez, F.; Castro-Osma, J. A.; Tejeda, J.; Martínez, J.; Lara-Sánchez, A. Turning waste into resources. Efficient synthesis of biopolyurethanes from used cooking oils and CO2J. CO2 Util. 202479, 102659.

  

2023

 

1. Navarro, M.; González-Lizana, D.; Sánchez-Barba, L. F.; Garcés, A.; Fernández, I.; Lara-Sánchez, A.; Rodríguez, A. M. Development of heterobimetallic Al/Mg complexes for the very rapid ring-opening polymerization of lactidesInorg. Chem. 202362, 14833-14837.

Figure 1

 

2. Jurado-Campos, A.; Soria-Meneses, P. J.; Arenas-Moreira, M.; Alonso-Moreno, C.; Bravo, I.; Rodríguez-Robledo, V.; Sánchez-Ajofrín. I.; Soler, A. J.; Garde, J. J.; Fernández-Santos, M. R. Vitamin E lipid-based nanodevices as a tool for ovine sperm protection against oxidative stress: impact on sperm motility. Antioxidants 2022, 11, 1988.

3. Jurado-Campos, A.; Soria-Meneses, P. J.; Arenas-Moreira, M.; Alonso-Moreno, C.; Rodríguez-Robledo, V.; Josefa Soler, A.; Garde, J. J.; Fernández-Santos, M. R. Minimizing sperm oxidative stress using nanotechnology for breeding programs in rams. J. Animal Sci. Biotechnol. 2023, 14, 106.

4. del Campo-Balguerías, A.; Parra-Cadenas, B.; Nieto-Jiménez, C.; Bravo, I.; Ripoll, C.; Poyatos-Racionero, E.; Gancarski, P.; Carrillo-Hermosilla, F.; Alonso-Moreno, C.; Ocaña, A. Guanylation reactions for the rational design of cancer therapeutic agents. Int. J. Mol. Sci. 2023, 24, 13820.

 

5. Pacheco-Liñán, P. J.; Alonso-Moreno, C.; Ocaña, A.; Ripoll, C.; García-Gil, E.; Garzón-Ruíz, A.; Herrera-Ochoa, D.; Blas-Gómez, S.; Cohen, B.; Bravo, I. Formation of highly emissive anthracene excimers for aggregation-induced emission/self-assembly directed (bio)imaging. ACS Appl. Mater. Interfaces 2023, 15, 44786-44795.

6. Juan, A.; Segrelles, C.; del Campo-Balguerías, A; Bravo, I.; Silva, I.; Peral, J.; Ocaña, A.; Clemente-Casares, P.; Alonso-Moreno, C.; Lorz, C. Anti-EGFR conjugated nanoparticles to deliver Alpelisib as targeted therapy for head and neck cancerCancer Nano. 202314, 29.

7. Martínez de Sarasa Buchaca, M.; de la Cruz-Martínez, F.; Sánchez-Barba, L. F.; Tejeda, J.; Rodríguez, A. M.; Castro-Osma, J. A.; Lara-Sánchez, A. One-pot terpolymerization of CHO, CO2 and l-lactide using chloride indium catalystsDalton Trans. 202352, 3482-3492.

Graphical abstract: One-pot terpolymerization of CHO, CO2 and l-lactide using chloride indium catalysts

 

8. Nam-Cha, S. H.; Domínguez-Jurado, E.; Tinoco-Valencia, S. L.; Pérez-Tanoira, R.; Morata-Moreno, N.; Alfaro-Ruiza, R.; Lara-Sánchez, A.; Esteban, J.; Luján, R.; Alonso-Moreno, C.; Ocaña, A.; López-González, A.; Aguilera-Correa, J. J.; Pérez-Martínez, F. C.; Molina-Alarcón; M. Synthesis, characterization, and antibacterial activities of a heteroscorpionate derivative platinum complex against methicillin-resistant Staphylococcus aureusFront. Cell. Infect. Microbiol. 202313, 1100947.

9. de la Cruz-Martínez, F.; Bresolí-Obach, R.; Bravo, I.; Alonso-Moreno, C.; Hermida-Merino, D.; Hofkens, J.; Lara-Sánchez, A.; Castro-Osma, J. A.; Martín, C. Unexpected luminescence of non-conjugated biomass-based polymers: new approach in photothermal imagingJ. Mater. Chem. B 202311, 316-324.

Graphical abstract: Unexpected luminescence of non-conjugated biomass-based polymers: new approach in photothermal imaging

 

10. de la Cruz-Martínez, F.; Martínez de Sarasa Buchaca, M.; Castro-Osma, J. A.; Lara-Sánchez, A. Catalytic synthesis of bio-sourced polyesters from epoxides and cyclic anhydrides. In Biopolymers; Sessini, V., Ghosh, S., Mosquera, M. E. G., Eds.; Elsevier, 2023; pp. 347-383. [BOOK CHAPTER]

11. Navarro, M.; Garcés, A.; Sánchez-Barba, L. F.; González-Lizana, D.; Lara-Sánchez, A. Very efficient organo-zinc scorpionates for CO2 fixation into a variety of cyclic carbonates: synthesis, coordination ability and catalytic studiesDalton Trans. 202352, 6105-6116.

Graphical abstract: Very efficient organo-zinc scorpionates for CO2 fixation into a variety of cyclic carbonates: synthesis, coordination ability and catalytic studies

 

2022

 

1. de la Cruz-Martínez, F.; Castro-Osma, J. A.; Lara-Sánchez, A. Catalytic synthesis of bio-sourced organic carbonates and sustainable hybrid materials from CO2. In Advances in Catalysis; Diéguez, M., Kleij, A. W., Eds.; Volume 70; Elsevier, 2022; pp. 189-236. [BOOK CHAPTER]

2. Gaona, M. A.; de la Cruz-Martínez, F.; Caballero, M. P.; Francés-Poveda, E.; Rodríguez, A. M.; Rodríguez-Diéguez, A.; North, M.; Castro-Osma, J. A.; Lara-Sánchez, A. Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates: catalytic studies for cyclic carbonate synthesis. Dalton Trans. 2022, 51, 11302-11315.

Graphical abstract: Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates: catalytic studies for cyclic carbonate synthesis

 

3. de la Cruz-Martínez, F.; Castro-Osma, J. A.; Lara-Sánchez, A. Carbon dioxide fixation into cyclic carbonates at room temperature catalyzed by heteroscorpionate aluminum complexes. Green Chemical Engineering 2022, 3, 280-287.

Image 1

 

4. Alberto, J.; Noblejas-López, M. M.; Bravo, I.; Arenas-Moreira, M.; Blasco-Navarro, C.; Clemente-Casares. P.; Lara-Sánchez, A.; Pandiella, A.; Alonso-Moreno, C.; Alberto, O. Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers 2022, 14, 4474.

5. Catalá, J.; Caballero, M. P.; de la Cruz-Martínez, F.; Tejeda, J.; Castro-Osma, J. A.; Lara-Sánchez, A.; García-Vargas, J. M.; García, M. T.; Ramos, M. J.; Gracia, I.; Rodríguez, J. F. Carbonation of epoxidized soybean oil in supercritical CO2 assisted by imidazole-based organocatalysts. J. CO2 Util. 2022, 61, 102060.

ga1

 

6. Martínez de Sarasa Buchaca, M.; de la Cruz-Martínez, F.; Francés-Poveda, E.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Garcés, A.; Castro-Osma, J. A.; Lara-Sánchez, A. Synthesis of Nonisocyanate Poly(hydroxy)urethanes from Bis(cyclic carbonates) and Polyamines. Polymers 2022, 14, 2719.

 

7. Caballero, M. P.; Carrascosa, F.; de la Cruz-Martínez, F.; Castro-Osma, J. A.; Rodríguez, A. M.; North, M.; Lara-Sánchez, A.; Tejeda, J. [4‐(2‐Hydroxyphenyl) imidazolium Salts as Organocatalysts for Cycloaddition of Isocyanates and Epoxides to Yield Oxazolidin‐2‐ones. ChemistrySelect 2022, 7, e202103977.

Description unavailable

8. Moya-López, C.; Bravo, I.; Castro-Osma, J. A.; Chapron, D.; Bourson, P.; Vagner, C.; Cochez, M.; Leoné, N.; Lara-Sánchez, A.; Alonso-Moreno, C.; Hermida-Merino, D. Synthesis of High Molecular Weight Stereo-Di-Block Copolymers Driven by a Co-Initiator Free Catalyst. Polymers 2022, 14, 232.

 

9. Juan, A.; Noblejas-López, M. M.; Arenas-Moreira, M.; Alonso-Moreno, C.; Ocaña, A. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Front. Cell Dev. Biol. 20229, 805336.

10. Ocaña, A. V.; Aguilera-Correa, J. J.; Domínguez-Jurado, E.; Pérez-Martínez, F. C.; Pérez-Tanoira, R.; López-Carretero, Y.; Masiá-Mondejar, J.; Castro-Osma, J. A.; Esteban, J.; Alonso-Moreno, C.; Molina-Alarcón, M.; Seguí, P. A bis(pyrazolyl)methane derivative against clinical Staphylococcus aureus strains isolated from otitis externa. Laryngoscope Investigative Otolaryngology 2022, 7, 283-290.

11. Gueddari-Aourir, A.; García-Alaminos, A.; García-Yuste, S.; Alonso-Moreno, C.; Canales-Vázquez, J.; Zafrilla, J. E. The carbon footprint balance of a real-case wine fermentation CO2 capture and utilization strategyRenewable and Sustainable Energy Reviews 2022157, 112058.

 

 

2021

1. Fast Addition of s-Block Organometallic Reagents to CO2-Derived Cyclic Carbonates at Room Temperature, Under Air, and in 2-MethyltetrahydrofuranChemSusChem 202114, 2084-2092.

 

2. Efficient Synthesis of Cyclic Carbonates from Unsaturated Acids and Carbon Dioxide and their Application in the Synthesis of Biobased Polyurethanes. ChemPlusChem 202186, 460-468.

 

3. Zinc-Catalyzed Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Inorg. Chem. 202160, 5322-5332.

 

4. Valorization of Agricultural Waste and CO2into Bioderived Cyclic Carbonates. J. Environ. Chem. Eng. 20219, 105464.

 

5. Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO2 and Cyclohexene Oxide. Organometallics 202140, 1503-1514.

 

6. Ring-Opening Copolymerization of Cyclohexene Oxide and Cyclic Anhydrides Catalyzed by Bimetallic Scorpionate Zinc Catalysts.Polymers 202113(10), 1651.

 

7. The Effect of WS2 Nanosheets on the Non-Isothermal Cold- and Melt-Crystallization Kinetics of Poly(L-lactic acid) Nanocomposites. Polymers 202113(13), 2214.

 

8. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment.Cancers 202113(14), 3387.

 

9. A novel bis(pyrazolyl)methane compound as a potential agent against Gram-positive bacteria. Sci. Rep. 202111, 16306.

 

10. Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer.Pharmaceutics 202113(14), 3387.

              

 

11. Efficient Bulky Organo-Zinc Scorpionates for the Stereoselective Production of Poly(rac-lactide)s. Polymers, 2021, 13(14), 2356.

 

 

2020

1. Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes.Inorg. Chem. 2020, 59, 8412−8423.

 

2. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chemistry 2020, 328, 127131.

 

3. Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO2 Mediated by NNO-Scorpionate Zinc Complexes.Polymers 2020, 12, 2148.

 

4. NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO2 Fixation into a Variety of Cyclic Carbonates. Inorg. Chem. 2020, 59, 12422−12430.

 

5. Controlled Delivery of BET-PROTACs: In Vitro Evaluation of MZ1-Loaded Polymeric Antibody Conjugated Nanoparticles in Breast Cancer. Pharmaceutics 202012, 986.

 

6. Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catal. Sci. Technol. 202010, 3265–3278.

 

7. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics 202012, 802.

 

8. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int. J. Mol. Sci202021, 6018.

 

9. The role of water and influence of hydrogen bonding on the self-assembly aggregation induced emission of an anthracene-guanidine-derivative.Chem. Commun., 202056, 4102-4105

 

 

2019

1. Study of the Coordination Modes of Hybrid NNCp Cyclopentadienyl/Scorpionate Ligands in Ir Compounds. Inorg. Chem201958, 900−908.

 

2. Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma. Int. J. Pharm 2019, 558, 110-119.

 

3. Influence of the Counterion on the Synthesis of Cyclic Carbonates Catalyzed by Bifunctional Aluminum Complexes. Inorg. Chem201958, 3396−3408.

 

4. Synthesis of helical aluminium catalysts for cyclic carbonate formation. Dalton Trans., 201948, 4218-4227.

 

5. Efficient CO2 fixation into cyclic carbonates catalyzed by NNO-scorpionate zinc complexes. Dalton Trans., 2019, 48, 10733-10742.

 

6. Synthesis of an enantiopure scorpionate ligand by a nucleophilic addition to a ketenimine and a zinc initiator for the isoselective ROP of rac-lactide.Chem. Commun., 201955, 8947-8950

 

7. Screening and Preliminary Biochemical and Biological Studies of [RuCl(p-cymene)(N,N-bis(diphenylphosphino)-isopropylamine)][BF4] in Breast Cancer Models.ACS Omega, 20194, 13005−13014.

 

8. Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy.Nanomaterials, 2019, 9, 1208.

 

9. Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources.ACS Sustainable Chem. Eng, 2019, 7, 20126-20138.

 

10. Trastuzumab-Targeted Biodegradable Nanoparticles for Enhanced Delivery of Dasatinib in HER2+ Metastasic Breast Cancer.Nanomaterials, 2019, 9, 1793.

2018