El sitio web de la UCLM utiliza cookies propias y de terceros con fines técnicos y de análisis, pero no recaba ni cede datos de carácter personal de los usuarios. Sin embargo, puede haber enlaces a sitios web de terceros, con políticas de cookies distintas a la de la UCLM, que usted podrá aceptar o no cuando acceda a ellos.

Puede obtener más información en la Política de cookies. Aceptar




1. de la Cruz-Martínez, F.; Castro-Osma, J. A.; Lara-Sánchez, A. Catalytic synthesis of bio-sourced organic carbonates and sustainable hybrid materials from CO2. In Advances in Catalysis; Diéguez, M., Kleij, A. W., Eds.; Volume 70; Elsevier, 2022; pp. 189-236. [BOOK CHAPTER]

2. Gaona, M. A.; de la Cruz-Martínez, F.; Caballero, M. P.; Francés-Poveda, E.; Rodríguez, A. M.; Rodríguez-Diéguez, A.; North, M.; Castro-Osma, J. A.; Lara-Sánchez, A. Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates: catalytic studies for cyclic carbonate synthesis. Dalton Trans. 2022, 51, 11302-11315.

Graphical abstract: Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates: catalytic studies for cyclic carbonate synthesis


3. de la Cruz-Martínez, F.; Castro-Osma, J. A.; Lara-Sánchez, A. Carbon dioxide fixation into cyclic carbonates at room temperature catalyzed by heteroscorpionate aluminum complexes. Green Chemical Engineering 2022, 3, 280-287.

Image 1


4. Alberto, J.; Noblejas-López, M. M.; Bravo, I.; Arenas-Moreira, M.; Blasco-Navarro, C.; Clemente-Casares. P.; Lara-Sánchez, A.; Pandiella, A.; Alonso-Moreno, C.; Alberto, O. Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers. Cancers 2022, 14, 4474.

5. Catalá, J.; Caballero, M. P.; de la Cruz-Martínez, F.; Tejeda, J.; Castro-Osma, J. A.; Lara-Sánchez, A.; García-Vargas, J. M.; García, M. T.; Ramos, M. J.; Gracia, I.; Rodríguez, J. F. Carbonation of epoxidized soybean oil in supercritical CO2 assisted by imidazole-based organocatalysts. J. CO2 Util. 2022, 61, 102060.



6. Martínez de Sarasa Buchaca, M.; de la Cruz-Martínez, F.; Francés-Poveda, E.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Garcés, A.; Castro-Osma, J. A.; Lara-Sánchez, A. Synthesis of Nonisocyanate Poly(hydroxy)urethanes from Bis(cyclic carbonates) and Polyamines. Polymers 2022, 14, 2719.


7. Caballero, M. P.; Carrascosa, F.; de la Cruz-Martínez, F.; Castro-Osma, J. A.; Rodríguez, A. M.; North, M.; Lara-Sánchez, A.; Tejeda, J. [4‐(2‐Hydroxyphenyl) imidazolium Salts as Organocatalysts for Cycloaddition of Isocyanates and Epoxides to Yield Oxazolidin‐2‐ones. ChemistrySelect 2022, 7, e202103977.

Description unavailable


8. Moya-López, C.; Bravo, I.; Castro-Osma, J. A.; Chapron, D.; Bourson, P.; Vagner, C.; Cochez, M.; Leoné, N.; Lara-Sánchez, A.; Alonso-Moreno, C.; Hermida-Merino, D. Synthesis of High Molecular Weight Stereo-Di-Block Copolymers Driven by a Co-Initiator Free Catalyst. Polymers 2022, 14, 232.


1. Fast Addition of s-Block Organometallic Reagents to CO2-Derived Cyclic Carbonates at Room Temperature, Under Air, and in 2-MethyltetrahydrofuranChemSusChem 202114, 2084-2092.


2. Efficient Synthesis of Cyclic Carbonates from Unsaturated Acids and Carbon Dioxide and their Application in the Synthesis of Biobased Polyurethanes. ChemPlusChem 202186, 460-468.


3. Zinc-Catalyzed Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Inorg. Chem. 202160, 5322-5332.


4. Valorization of Agricultural Waste and CO2into Bioderived Cyclic Carbonates. J. Environ. Chem. Eng. 20219, 105464.


5. Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO2 and Cyclohexene Oxide. Organometallics 202140, 1503-1514.


6. Ring-Opening Copolymerization of Cyclohexene Oxide and Cyclic Anhydrides Catalyzed by Bimetallic Scorpionate Zinc Catalysts.Polymers 202113(10), 1651.


7. The Effect of WS2 Nanosheets on the Non-Isothermal Cold- and Melt-Crystallization Kinetics of Poly(L-lactic acid) Nanocomposites. Polymers 202113(13), 2214.


8. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment.Cancers 202113(14), 3387.


9. A novel bis(pyrazolyl)methane compound as a potential agent against Gram-positive bacteria. Sci. Rep. 202111, 16306.


10. Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer.Pharmaceutics 202113(14), 3387.



11. Efficient Bulky Organo-Zinc Scorpionates for the Stereoselective Production of Poly(rac-lactide)s. Polymers, 2021, 13(14), 2356.




1. Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes.Inorg. Chem. 2020, 59, 8412−8423.


2. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chemistry 2020, 328, 127131.


3. Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO2 Mediated by NNO-Scorpionate Zinc Complexes.Polymers 2020, 12, 2148.


4. NNC-Scorpionate Zirconium-Based Bicomponent Systems for the Efficient CO2 Fixation into a Variety of Cyclic Carbonates. Inorg. Chem. 2020, 59, 12422−12430.


5. Controlled Delivery of BET-PROTACs: In Vitro Evaluation of MZ1-Loaded Polymeric Antibody Conjugated Nanoparticles in Breast Cancer. Pharmaceutics 202012, 986.


6. Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catal. Sci. Technol. 202010, 3265–3278.


7. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics 202012, 802.


8. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int. J. Mol. Sci202021, 6018.


9. The role of water and influence of hydrogen bonding on the self-assembly aggregation induced emission of an anthracene-guanidine-derivative.Chem. Commun., 202056, 4102-4105




1. Study of the Coordination Modes of Hybrid NNCp Cyclopentadienyl/Scorpionate Ligands in Ir Compounds. Inorg. Chem201958, 900−908.


2. Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma. Int. J. Pharm 2019, 558, 110-119.


3. Influence of the Counterion on the Synthesis of Cyclic Carbonates Catalyzed by Bifunctional Aluminum Complexes. Inorg. Chem201958, 3396−3408.


4. Synthesis of helical aluminium catalysts for cyclic carbonate formation. Dalton Trans., 201948, 4218-4227.


5. Efficient CO2 fixation into cyclic carbonates catalyzed by NNO-scorpionate zinc complexes. Dalton Trans., 2019, 48, 10733-10742.


6. Synthesis of an enantiopure scorpionate ligand by a nucleophilic addition to a ketenimine and a zinc initiator for the isoselective ROP of rac-lactide.Chem. Commun., 201955, 8947-8950


7. Screening and Preliminary Biochemical and Biological Studies of [RuCl(p-cymene)(N,N-bis(diphenylphosphino)-isopropylamine)][BF4] in Breast Cancer Models.ACS Omega, 20194, 13005−13014.


8. Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy.Nanomaterials, 2019, 9, 1208.


9. Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources.ACS Sustainable Chem. Eng, 2019, 7, 20126-20138.


10. Trastuzumab-Targeted Biodegradable Nanoparticles for Enhanced Delivery of Dasatinib in HER2+ Metastasic Breast Cancer.Nanomaterials, 2019, 9, 1793.