El sitio web de la UCLM utiliza cookies propias y de terceros con fines técnicos y de análisis, pero no recaba ni cede datos de carácter personal de los usuarios. Sin embargo, puede haber enlaces a sitios web de terceros, con políticas de cookies distintas a la de la UCLM, que usted podrá aceptar o no cuando acceda a ellos.

Puede obtener más información en la Política de cookies. Aceptar

PID2019-105049RB-I00 Semiconductores orgánicos avanzados para celulas solares orgánicas y basadas en perovskitas

PID2019-105049RB-I00

 

PID2019-105049RB-I00 Semiconductores orgánicos avanzados para celulas solares orgánicas y basadas en perovskitas
MICIN

Dates: 01/06/2020 - 31/05/2023

Number of resarchers: 6

Founded with 169 400.00€

Founding Entity: Ministerio de Ciencia e Innovación

Abstract:

The general objective of this proposal is the development of new organic semiconductors for application in solar cells. This project is divided in four main objectives focused on the synthesis and study of the electronic properties of different families of organic components with applications in solar cells (bulk heterojunction and perovskite) as well as photodetectors. Continuing the research developed by the applicants in the last years, we extend here our knowhow about the electronic properties of porphyrins derivatives as electron donor in Bulk Heterojunction Solar Cells (BHJ-OSCs) to other metalloporphyrins by coordination, instead of Zn, of other different metals as Cu (II), Ni(II), Mg(II), to stablish a correlation between the metal and electronics properties of porphyrins and, therefore, with the efficiency of the BHJ-OSCs; even we’lll prepare new D-A-D molecules with Au(III) porphyrin as central core, taken in account that the gold presence will change the electronic behaviour of the porphyrin systems, becoming electron acceptor; the broad absorption of porphyrins and the adjustment of the orbital levels should make Au-Porphyrins excellent non-fullerenes acceptors; behavior no described yet in literature. We will pursue as well the synthesis of quinoidal porphyrins and the synthesis of D-A-D systems based on β-functionalized porphyrins. Up today, this functionalization has not been studied in donor compounds with application in solar devices, although it is known that this functionalization allows a more efficient extension of the conjugation that meso-functionalization and, so, an increase towards the red of the range of the absorption of the light. All these structural modifications of the porphyrin derivatives would make possible to enhance the efficiencies of the solar devices, up to >12%. Dimers of trimers of porphyrins and triply fused porphyrins will be prepared looking for the absorption in the deep near-IR region (1200 nm) to evaluate their properties as near-IR photodetectors.

The second objective of this proposal is devoted to the synthesis and application in BHJ-OSCs of new non fullerene acceptors with diketopyrrolopyrrole or triazatruxene as central core. With careful molecular design for smart adjustment of the orbital levels we will try to reach efficiencies close to 14%.

The third objective consist of the study of new quinoidal or aromatic conjugated oligomers based on thiophene or selenophene. Quinoidal oligothiophenes (QOT) were recently found to be promising semiconductor components in organic field effect transistors (OFETs) for molecular electronics. We will study the behaviour of thieno[3,4-b]thiophene monomer, that keep the aromaticity of one thiophene ring, and vinyleneselenophene as selenium (Se) compounds show higher polarizability and lower aromaticity than thiophehe compounds and then, the quinoidal character can be improved. Finally, new carbon nanostructures (based on graphene and carbon nanotubes) with suitable functionalization via nitrene chemistry, which keep the conjugation of the carbon nanostructure will be prepared with the aim of being used as hole or electron transporter layer (depending on the structure) in perovskite solar cells; the target is to improve both, the efficiency and the stability of the device.

Publications derived from the project:

  1. H. Uceta, A. Cabrera-Espinoza, M. Barrejón, J.G.Sanchez, E. Gutierrez-Fernandez, I. Kosta, J. Martín, S. Collavini, E. Martínez-Ferrero, F. Langa, J.L. Delgado. p-Type Functionalized Carbon Nanohorns and Nanotubes in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023(in press). DOI: 10.1021/acsami.3c07476

  2. Guijarro, F.; de la Cruz, P.; Khandelwal, K.; Singhal, R.; Langa, F.; SharmaG.; Effects of halogenation on cyclopentadithiophenevinylene-based acceptors with excellent responses in binary organic solar cells. ACS Applied Materials & Interfaces, 2023, 17, 21296–21305 (DOI:10.1021/acsami.3c01487)

  3. Cuesta, V.; Vartanian, M.; Kumar M.; Singh, R.; de la Cruz, P.; Sharma, G.D.; Langa, F.; Ambipolar behavior of a Cu(II)-porphyrin derivative in Ternary Organic Solar Cells. Solar RRL, 2023, 7, 201046 (DOI: 10.1002/solr.202201046) (open access)

  4. Privado, M.; Donoso, B.; Khandelwal, K.; Singhal, R.; Guijarro, F.; Díaz-Ortíz, Á.; Prieto, P.; de la Cruz, P.; Sharma, G.D.; Langa, F.; Low energy loss (0.42 eV) and efficiency over 15% enabled by non-fullerene acceptors containing N-bis(trifluoromethyl)phenylbenzotriazole as the core in binary solar cells. Journal of Materials Chemistry C, 2022, 10(36), 13174–13182, (DOI: 10.1039/d2tc02289c)

  5. Gielen, S.; Cuesta, V; Brebels, S.; Quill, T.J.; Vanderspikken, J.; Lutsen, L; de la Cruz, P.; Vandewal, K.; Langa, F.; Maes, W.; meso-Ethynyl-extended push-pull type porphyrins for near-infrared organic photodetectors. Journal of Materials Chemistry C, 2022, 10, 10853–10859 (DOI: 10.1039/d2tc00588c)

  6. Cuesta, V.; Singh, M. K.; Gutierrez-Fernandez, E.; Martín, J.; Domínguez, R.; de la Cruz, P.; Sharma, G. D.; Langa, F. Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, DOI: (10.1021/acsami.1c22813)

  7. Arellano, L.M.;  Gobeze, H.B.; Jang, Y.; Barrejón, M.; Parejo, C.; Álvarez, J.C.;  Gómez-Escalonilla,  M.; Sastre-Santos, A.; D'Souza, F.; Langa, F.; Formation and Photoinduced Electron Transfer in Porphyrin- and Phthalocyanine-Bearing N-Doped Graphene Hybrids Synthesized by Click Chemistry. Chemistry - A European Journal, 2022, 28(22), e202200254, (DOI: 10.1002/chem.202200254(open access)

  8. Privado, M.; Agrawal, A.; de la Cruz, P.; Keshtov, M. L.; Sharma, G. D.; Langa, F. Noncovalent Conformational Locks Enabling Efficient Nonfullerene Acceptors. Solar RRL, 2022, 6, 2100768 (DOI: 10.1002/solr.202100768). (open Access)

  9. Caballero, R.; Barrejon, M.; Cerda, J.; Aragó, J.; Seetharaman, S.; de la Cruz, P.; Orti, E.; D'Souza, F.; Langa, F. Self-Assembly-Directed Organization of a Fullerene-Bisporphyrin into Supramolecular Giant Donut Structures for Excited-State Charge Stabilization. Journal of the American Chemical Society, 2021, 143, 11199–11208 (DOI: 10.1021/jacs.1c05133). (open access)

  10. Privado, M.; Dahiya, H.; de la Cruz, P.; Keshtov, M. L.; Langa, F.; Sharma, G. D. A ternary organic solar cell with 15.6% efficiency containing a new DPP-based acceptor. Journal of Materials Chemistry C, 2021, 9, 16272–16281 (DOI: 10.1039/D1TC02241E).

  11. Caballero, R.; Calbo, J.; Aragó, J.; de la Cruz, P.; Orti, E.; Tkachenko, N. V.; Langa, F. Enhanced electronic communication through a conjugated bridge in a porphyrin-fullerene donor-acceptor couple. Journal of Materials Chemistry C, 2021, 9, 10889–10898 (DOI: 10.1039/D1TC01160J).

  12. Cuesta, V.; Singhal, R.; de la Cruz, P.; Sharma, G.D.; Langa, F.. Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. ChemSusChem, 2021, 14, 3494–3501 (DOI: 10.1002/cssc.202002664).
  13. Privado, M.; de la Cruz, P.; Malhotra, P.; Sharma, G. D.; Langa, F. Influence of the dipole moment on the photovoltaic performance of polymer solar cells employing non-fullerene small molecule acceptor. Solar Energy, 2021, 221, 393–401 (DOI: 10.1016/j.solener.2021.04.049).

  14. Dahiya, H.; Cuesta, V.; de la Cruz, P.; Langa, F.; Sharma, G. D. Highly Efficient (15.08%) All-Small-Molecule Ternary Solar Cells Constructed with a Porphyrin as a Donor and Two Acceptors. ACS Applied Energy Materials, 2021, 4, 4498–4506 (DOI: 10.1021/acsaem.1c00126).

  15. Privado, M.; Guijarro, F. G.; de la Cruz, P.; Singhal, R.; Langa, F.; Sharma, G. D. Fullerene/Non-fullerene Alloy for High-Performance All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 6461–6469 (DOI: 10.1021/acsami.0c21844).

  16. Rodriguez-Seco, C.; Cabau, L.; Privado, M.; de la Cruz, P.; Langa, F.; Sharma, G. D.; Palomares, E. Panchromatic Triple Organic Semiconductor Heterojunctions for Efficient Solar Cells. ACS Applied Energy Materials, 2020, 3, 12506–12516 (DOI: 10.1021/acsaem.0c02469).

  17. Cuesta, Virginia; Singhal, Rahul; de la Cruz, Pilar; Sharma, Ganesh D.; Langa, Fernando. Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. ChemSusChem, 2020, 14, 3494–3501 (DOI: 10.1002/cssc.202002664).