


Basic Model and Priors

In Bayesian methods the following elements are used:

A Model. A parametric model with parameter vector θ is selected to represent the

variable X being analyzed, that is:

X ∼ p(x|θ)

A prior distribution of the parameters. Since the parameters are assumed random

in Bayesian methods, they have a distribution function. Initially a “prior distribution” is

given:

θ ∼ p(θ|α),

that is, a distribution with parameter α, called hyperparameter to be distinguished

from the initial model parameter θ.

A sample. It is assumed that we have a sample X = (x1, x2, . . . , xn) of size n

coming from the model population, i.e. with likelihood

p(X|θ) ≡ L(X|θ).



Posterior and predictive distributions

The marginal likelihood of the evidence. This is:

p(X|α) =

∫
θ

p(X|θ)p(θ|α)dθ.

The posterior distribution. Combining the parameters prior distribution and the

sample information we get the posterior distribution of the parameters given X, by

means of

p(θ|X,α) =
p(X|θ)p(θ|α)

p(X|α)
∝ p(X|θ)p(θ|α)

The prior predictive distribution.

p(x̃|α) =

∫
θ

p(x̃|θ)p(θ|α)dθ

The posterior predictive distribution.

p(x̃|X,α) =

∫
θ

p(x̃|θ)p(θ|X,α)dθ



Choice of simple prior distributions is convenient, because this simplifies things. In this

sense, the so-called conjugated distributions are of special interest.

DEFINITION (CONJUGATE DISTRIBUTIONS)

A family of prior distributions is said natural conjugate of a family of likelihoods, iff

the family of posterior distributions that results coincides with the initial family of

distributions.
p(θ|X,α) ∝ p(X|θ)p(θ|α) = p(θ|H(X, α)),

that is, the posterior belongs to the prior family where the posterior hyperparameters are a
function of the data and the prior hyperparameters.

Thus, obtaining the posterior distribution reduces to calculating the posterior

hyperparameters as a function of the prior hyperparameters and the sample.

The main advantage is that we use the same family for priors and posteriors.

Tables of conjugate priors can be found in:

https://en.wikipedia.org/wiki/Conjugate_prior

Some illustrative examples are given next.



Conjugate of the Bernoulli family Be(θ)

The natural conjugate of the Bernoulli family Be(θ) is the beta family Beta(r, n).

Consider a Bernoulli variable with beta Beta(r′, n′) prior Be(θ);

p(θ;α) = p(θ; r′, n′) ∝ θr′−1(1− θ)n′−r′−1, ; 0 ≤ θ ≤ 1. (1)

where ∝ means “proportional to”.

If we repeat n Bernoulli’s experiment and get x successes, then, the likelihood p(x; θ),

becomes:

p(x; θ) =

(
n

x

)
θx(1− θ)n−x; 0 ≤ x ≤ n, (2)

that is,

p(x; θ) ∝ θx(1− θ)n−x.

Therefore, the posterior distribution becomes a Beta(r′ + x, n′ + n), because

p(θ|x, r′, n′) ∝ p(x; θ)p(θ; r′, n′) = θx(1− θ)n−xθr′−1(1− θ)n′−r′−1

= θr
′+x−1(1− θ)n′+n−(r′+x)−1. (3)



Asymptotic behavior

We have seen that the conjugate of the Bernoulli family is the Beta family, that is, if the

prior of the Bernoulli parameter θ is a Beta(r′, n′) distribution, then, the posterior of θ is

also a Beta(r′′, n′′) distribution.

The resulting formulas for determining the posterior parameters as a function of the prior

parameters and the experimental sample, consisting in repeating n times the Bernoulli

experiment and observing x successes, is given by:

Beta(r′, n′) ⇒ Beta(r′ + x, n′ + n) ⇒ r′′ = r′ + x; n′′ = n′ + n.

When n tends to infinity, the number of expected successes x tends to infinity too, and

then, the prior hyperparameters become negligible with respect to the posterior

hyperparameters, so that the objective contribution of the sample dominates. Only

when the sample size n is relatively small, the expert opinion has some weight.



Conjugate of the Poisson family P (θ)

The conjugate distribution of the Poisson family, P (θ), is the gamma family G(k, λ).

Consider a Poisson variable P (θ), with gamma prior G(k′, λ′) with prior pdf:

p(θ; k′, λ′) =
e−λ

′θ(λθ)k
′−1

Γ(k′)
∝ e−λ′θθk

′−1; θ ≥ 0. (4)

If we observe x events during a period of duration λ, the likelihood p(x; θ) of observing

those events assuming a process with intensity λ is

p(x; θ) =
e−λθ(λθ)x

x!
∝ e−λθθx. (5)

Therefore, the posterior becomes:

p(θ|x, k′, λ′) ∝ p(x; θ)p(θ; k′, λ′)

= e−λθθxe−λ
′θθk

′−1 = e−(λ′+λ)θθ(k
′+x)−1, (6)

that is, the posterior is the gamma distribution G(k′ + x, λ′ + λ).



Asymptotic behavior

We have seen that the conjugate of the Poisson family is the Gamma family, that is, if

the prior of the Poisson parameter λ is a Gamma(k′, λ′) distribution, then, the posterior

of λ is also a Gamma(k′′, λ′′) distribution.

The resulting formulas for determining the posterior parameters as a function of the prior

parameters and the experimental sample, consisting in observing the event during a period

of duration λ and observing x events, is given by:

Gamma(k′, λ′) ⇒ Gamma(k′ + x, λ′ + λ) ⇒ k′′ = k′ + x; λ′′ = λ′ + λ.

When λ tends to infinity, the number of expected successes x tends to infinity too, and

then, the prior hyperparameters become negligible with respect to the posterior

hyperparameters, so that the objective contribution of the sample dominates. Only

when the observation duration λ is relatively small, the expert opinion has some

weight.



Bayesian methods

We end this part by saying that Bayesian methods do not select one model from the

initial family of distributions but any possible convex combination (predictive model)

of this family compatible with the prior.

This enlarges substantially the possible set of models, allowing the sample to provide

us with the most convenient model.



Illustrative examples



Example 1
Bayesian methods consider parameters as random variables.
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Initial normal family N(mu,1) with uniform prior and prior predictive

For example if we have a model with a normal N(θ, 1) random variable, we can assume

that the parameter θ is random, for example a uniform U(4, 8) distribution.

The initial random distribution of the parameters is called the prior distribution. If this

distribution has parameters, we call them hyperparameters to distinguish them from the

parameters of the initial model. Thus, the prior in the example is the uniform distribution,

and the hyperparameters are, for example, 4 and 8.

The distribution we are really assuming is a weighted or mixed distribution that

results after combining the prior with the initial family of distributions.



EXAMPLE 1: FAMILY OF NORMALS N(θ, 1) WITH UNIFORM PRIOR
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Initial normal family N(mu,1) with uniform prior and prior predictive

This figure shows a family of normals N(θ, 1) and a uniform U(4, 8) prior, that leads to

the prior predictive density in the figure, that is, to:

p(x̃|4, 8) =

∫
θ

fU(4,8)(θ)fN(θ,1)(x̃)dθ,

where θ is the parameter and 4 and 8 are the hyperparameters.



EXAMPLE 1: FAMILY OF NORMALS N(θ, 1) WITH UNIFORM PRIOR
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Prior Predictive Density

This is the initially assumed prior predictive distribution:

p(x̃|4, 8) =

∫
θ

fU(4,8)(θ)fN(θ,1)(x̃)dθ,

which is not a normal distribution.



EXAMPLE 1: FAMILY OF NORMALS N(θ, 1) WITH UNIFORM PRIOR
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Initial normal family N(mu,1), Prior, Priorpredictive

Illustration of how to update the uniform prior with one sample to obtain the posterior.

The posterior distribution is:

p(θ|X,U(4, 8)) ∝ fU(4,8)(θ)
∏

i=1,10

fN(θ,1)(xi)

The posterior predictive distribution (dashed line) becomes

p(x̃|X,U(4, 8)) =

∫
θ

p(θ|X,U(4, 8))fN(θ,1)(x̃)dθ



EXAMPLE 1: FAMILY OF NORMALS N(θ, 1) WITH UNIFORM PRIOR
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Initial normal family N(mu,1), Prior, Priorpredictive

Illustration of how to update the uniform prior with one sample to obtain the posterior.

The posterior distribution is:

p(θ|X,U(4, 8)) ∝ fU(4,8)(θ)
∏

i=1,10

fN(θ,1)(xi)

The posterior predictive distribution becomes

p(x̃|X,U(4, 8)) =

∫
θ

p(θ|X,U(4, 8))fN(θ,1)(x̃)dθ



EXAMPLE 2: FAMILY OF NORMALS N(θ, 1) WITH GAMMA PRIOR
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Initial normal family N(mu,1) with gamma prior and prior predictive

This figure shows a family of normals N(θ, 1) and a gamma Gamma(8, 0.8) prior, that

leads to the prior predictive density in the figure, that is, to:

p(x̃|8, 0.8) =

∫
θ

fG(8,0.8)(θ)fN(θ,1)(x̃)dθ,

where θ is the parameter and 8 and 0.8 are the hyperparameters.



EXAMPLE 2: FAMILY OF NORMALS N(θ, 1) WITH GAMMA PRIOR
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This is the prior predictive distribution

p(x̃|8, 0.8) =

∫
θ

fG(8,0.8)(θ)fN(θ,1)(x̃)dθ,

which is not a gamma distribution.



EXAMPLE 2: FAMILY OF NORMALS N(θ, 1) WITH GAMMA PRIOR
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Initial normal family with prior,priorpredictive, posterior and postriorpredictive

Illustration of how to update the gamma prior with one sample to obtain the posterior.

The posterior distribution is:

p(θ|X,Gamma(8, 0.8)) ∝ fGamma(8,0.8)(θ)
∏

i=1,10

fN(θ,1)(xi)

The posterior predictive distribution becomes

p(x̃|X,Gamma(8, 0.8)) =

∫
θ

p(θ|X,Gamma(8, 0.8))fN(θ,1)(x̃)dθ



EXAMPLE 2: FAMILY OF NORMALS N(θ, 1) WITH GAMMA PRIOR
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Initial normal family with prior,priorpredictive, posterior and postriorpredictive

Illustration of how to update the gamma prior with one sample to obtain the posterior.

The posterior distribution is:

p(θ|X,Gamma(8, 0.8)) ∝ fGamma(8,0.8)(θ)
∏

i=1,10

fN(θ,1)(xi)

The posterior predictive distribution becomes

p(x̃|X,Gamma(8, 0.8)) =

∫
θ

p(θ|X,Gamma(8, 0.8))fN(θ,1)(x̃)dθ



Family of normals N(θ, 1) with uniform and gamma
priors
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Initial normal family N(mu,1), Prior, Priorpredictive
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Initial normal family with prior,priorpredictive, posterior and postriorpredictive

The posterior distributions tend to be independent on the priors when the sample

size increases, as illustrated by the two figures corresponding to two different priors

(uniform and gamma).



Family of normals N(θ, 1) with uniform and gamma
priors
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Initial normal family N(mu,1), Prior, Priorpredictive
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Initial normal family with prior,priorpredictive, posterior and postriorpredictive

The posterior distributions tend to be independent on the priors when the sample

size increases, as illustrated by the two figures corresponding to two different priors

(uniform and gamma).



EXAMPLE 3: NORMALS N(4, 1) AND N(8, 2) WITH CATEGORICAL cat(1/2) PRIOR
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Initial normals family with Categorical prior and prior predictive I

This figure shows normals N(4, 1) and N(8, 2) and the resulting prior predictive

distribution associated with a discrete prior with weights 1/2 and 1/2, respectively. i. e.

p(x̃|1/2) = 1/2fN(4,1)(x) + 1/2fN(8,2)(x)



EXAMPLE 3: NORMALS N(4, 1) AND N(8, 2) WITH CATEGORICAL cat(1/4) PRIOR
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Initial normals family with Categorical prior and prior predictive II

This figure shows normals N(4, 1) and N(8, 2) and the resulting prior predictive

distribution associated with a discrete prior with weights 1/4 and 3/4, respectively. i. e.

p(x̃|1/4) = 1/4fN(4,1)(x) + 3/4fN(8,2)(x)



EXAMPLE 3: NORMALS N(4, 1) AND N(8, 2) WITH CATEGORICAL PRIORS
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Initial normals family with Categorical prior and prior predictives I and II

This figure shows normals N(4, 1) and N(8, 2) and the resulting mixed distribution

associated with two discrete priors with weights 1/2 and 1/2 and 1/4 and 3/4,

respectively.



EXAMPLE 3: NORMALS N(4, 1) AND N(8, 2) WITH CATEGORICAL PRIORS
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Illustration of how to obtain the posterior and the predictive prior with one sample.

The posterior distribution is:

p(θ|X,Cat(θi)) ∝ pCat(θi)(θ)
∏

i=1,10

fN(θ,1)(xi)

The posterior predictive distribution becomes

p(x̃|X,Cat(θi)) =

2∑
i=1

p(θ|X,Cat(θi))fN(θ,1)(x̃)dθ



EXAMPLE 3: NORMALS N(4, 1) AND N(8, 2) WITH CATEGORICAL PRIORS
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Normal with Categorical priors

Illustration of how to update the uniform prior with one sample to obtain the posterior.

The posterior distribution is:

p(θ|X,Cat(θi)) ∝ pCat(θi)(θ)
∏

i=1,10

fN(θ,1)(xi)

The posterior predictive distribution becomes

p(x̃|X,Cat(θi)) =

2∑
i=1

p(θ|X,Cat(θi))fN(θ,1)(x̃)dθ
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