Examples of applications.
The water supply problem.

Algebra



THE WATER SUPPLY PROBLEM
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THE WATER SUPPLY PROBLEM

What are the data? What are the unknowns?
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STATEMENT OF THE PROBLEM
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Statement of the problem

STATEMENT OF THE PROBLEM
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The student must know
how to humber the nodes
and differentiate between
a convenient numbering
and one that is not.



STATEMENT OF THE PROBLEM

Analysis of the solution
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COMPATIBILITY SOLUTION
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COMPATIBILITY SOLUTION
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SET OF SOLUTIONS WITHOUT CAPACITY LIMITS

The student must determine the dimension of the linear space and obtain all solutions.

There are infinite solutions with four degrees of freedom
because there are four holes in the network.
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The solution is an affine space associated with the linear space.



Interpretation of the

solutions:
Circulating flow in the
first hole

First basic solution of
local internal flow without
inputs and outputs of
fluid corresponding to the
associated homogeneous
system
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Interpretation of the

solutions:
Circulating flow in the
second hole

Second basic solution of
local internal flow without
inputs and outputs of
fluid corresponding to the
associated homogeneous
system
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Interpretation of the

solutions:
Circulating flow in the
third hole

Third basic solution of
local internal flow without
inputs and outputs of
fluid corresponding to the
associated homogeneous
system
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Interpretation of the

solutions:
Circulating flow in the
fourth hole

Fourth basic solution of
local internal flow without
inputs and outputs of
fluid corresponding to the
associated homogeneous
system
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SET OF SOLUTIONS

Interpretation of the

solutions:
Particular solution of the
complete system

O Ssinknode

O Source node

q. G
6
) —1 0 0 0 4
. : r 1 0 0 0 .
A particular solution that zs . -1 0 0 2
can be obtained by 2 0 -1 0 0 8
= g | = p1 2 3 4 1
sending the flow to each - kI e R S RS I ;
destination by any o § § —(i) _‘i 10
possible path o ; ; : 1) | 13
0



STATEMENT OF THE PROBLEM WITH CAPACITY LIMITS

Statement of the problem
with all restrictions
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The student should
identify inappropriate
models and identify the
missing restrictions, such
as pipeline capacities.



STATEMENT OF THE PROBLEM WITH CAPACITY LIMITS

interpret them

physically to see |

Compatibility
conditions.
It is necessary to

they represent the
desired model.
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COMPATIBILITY CONDITIONS
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SET OF SOLUTIONS WITH CAPACITY LIMITS

4 6 4 6 4 6 4 6
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Pipeline capacities = 6

8
Y N=1 A4 >0i=1,2,...,8
1=1

The solution is a polytope.

The set of all solutions is useful to answer many interesting questions from
the mathematical and engineering point of view.



SET OF SOLUTIONS WITH CAPACITY LIMITS

Seach for oversized pipelines
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Pipeline capacities = 6
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Pipelines 3,7,8,9,12 and 13
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They are pipelines in which none of the components of the solutions reach
their capacities. The capacity of each of them could be limited to that
maximum without changing the solutions.



SET OF SOLUTIONS WITH CAPACITY LIMITS

Search for pipelines that cannot fail

(1) Pipeline capacities = 6
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Pipelines 1, 2, 3, 8, 13, 14
and 15 cannot fail without
causing supply problems.

They take values of the same sign (all positive or all negative) in all solutions.



SET OF SOLUTIONS WITH CAPACITY LIMITS

Search for pipelines that cannot fail simultaneously
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This condition implies that all lambdas must be null.
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SET OF SOLUTIONS WITH CAPACITY LIMITS

Search for pipelines with fixed flow
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Pipelines 8, 13, 14 and 15
always have the same flow.

The flow rates of the pipes 8, 13, 14 and 15 are always the same
and equal to 1, 3, 6 and 6, respectively.
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SET OF SOLUTIONS WITH CAPACITY LIMITS

Pipeline 10 damaged
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For pipeline 10 to have zero

flow, the the first four
lambdas must be null.

Therefore the remaining solutions are given by the other columns.



SET OF SOLUTIONS WITH CAPACITY LIMITS
Pipeline 10 damaged
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If pipelines 7 and 10 fail, the supply is maintained.



SET OF SOLUTIONS WITH CAPACITY LIMITS
Pipeline 10 damaged
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If pipelines 4, 7 and 10 fail, the only solution is given
by the first column of the matrix.



SET OF SOLUTIONS WITH CAPACITY LIMITS
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can any other pipeline fail?

None can fail, because the
solution is unique.

The unique solution is bad engineering, because there is no flexibility left. It
is not convenient because its vulnerability to failures.



SET OF SOLUTIONS WITH CAPACITY LIMITS
RETENTION VALVES IN PIPELINES 2 AND 15
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The solution is a polyhedron, that is, the sum of a linear space
plus a cone plus a polytope (a vector).



