4.- Minería y suelo (I). Caracteres generales de los suelos

Origen del suelo

         Las arcillas en la formación del suelo

Mineralogía y físico-química del suelo

         Minerales

         Agua en el suelo

         Gases en el suelo

         Materia orgánica

         Distribución de los componentes en el suelo

         Textura y estructura del suelo

Clasificación de suelos

Análisis del suelo

         Técnicas físicas

         Propiedades físico-químicas

         Análisis químico

Suelo y salud humana

Bibliografía

 

4.- Minería y suelo (I). Caracteres generales de los suelos

El suelo constituye la “epidermis” de nuestro planeta, y se forma como consecuencia de la interacción entre las rocas del sustrato continental y la atmósfera. El suelo sufre de forma directa las consecuencias de la actividad minera: 1) ha de ser removido para llevar a cabo la minería a cielo abierto; 2) sobre él se realizan las actividades de transporte; 3) sobre él se ubican las escombreras; y 4) recibe los efluentes líquidos que se infiltran en el terreno, entre otras perturbaciones.

Tradicionalmente se consideró que el suelo “lo aguantaba todo”, que se podía verter sobre él todo lo que se desease, que tenía una capacidad de absorción y purificación prácticamente infinita. Esto no era más que una verdad a medias. Las capacidades depuradoras de los suelos existen, pero actúan tan a largo plazo que es necesario considerar que a escala de tiempo humano la regeneración de los suelos no se produce a ritmo suficiente como para impedir graves problemas de contaminación. En este sentido son necesarias políticas preventivas, para evitar que esta contaminación se produzca, y medidas correctoras, que permitan recuperar lo más rápidamente posible los suelos afectados por esta problemática. La necesidad de protección del suelo se puso de manifiesto en 1972 por el Consejo de Europa en su Carta Europea del Suelo, donde se establecieron los principios generales de protección de éstos, los que pasaron a ser considerados como un recurso no renovable.

En este tema estudiaremos las características del suelo que resultan de interés para entender los mecanismos por los que éstos se contaminan y aun más importante, cómo éstos pueden ser regenerados. En temas sucesivos analizaremos estos aspectos con mayor detalle.

Origen del suelo

El suelo constituye la interfase entre las rocas del sustrato continental y la atmósfera, formándose como consecuencia de los fenómenos físicos, físico-químicos y biológicos de intercambio que ahí se producen.

El concepto de suelo es, por tanto, un concepto evolutivo. Este se forma como consecuencia de un proceso dinámico, que implica un cambio progresivo desde que la roca se pone en contacto con la atmósfera como consecuencia de la erosión, hasta su desarrollo completo.

Un concepto muy relacionado es el de regolito, que constituye lo que podríamos llamar el “protosuelo”, es decir, una capa no estructurada de materiales que se acumula sobre la superficie del terreno como consecuencia de procesos diversos. Por su parte, el suelo es un regolito evolucionado, que ha adquirido la estructuración en capas u horizontes que le es característica. Por ejemplo, la superficie de la Luna está cubierta por el regolito lunar, formado por fragmentos de rocas y polvo que han resultado de los impactos de meteoritos, y de la acumulación de polvo cósmico, sin que se forme un suelo debido a la ausencia de una atmósfera, agua, y una dinámica superficial que permita su desarrollo. También las zonas de alta montaña, por encima de determinadas altitudes, en las que ya no llega a desarrollarse vegetación, tenemos un regolito formado por los restos de la meteorización del sustrato: Andes, Béticas.

  

Cuando eliminamos el suelo de una porción de terreno, al cabo de unos meses o unos pocos años observamos que comienza a implantarse vegetación, que se forman acumulaciones de tierra, y que los fragmentos de rocas comienzan a redondear sus formas, liberando fragmentos menores. Es decir, se está formando un regolito, que constituye el punto de partida de la edafogénesis, es decir la formación de un suelo (figura 1).

En la edafogénesis, el primer proceso que tiene lugar es la diferenciación de dos horizontes:

·        El más superficial, u “Horizonte A” que se forma como consecuencia de la implantación de vegetación sobre el regolito: la actividad de las raíces, la acumulación de los restos vegetales, la actividad animal (lombrices, insectos u otros animales excavadores), así como por la acumulación en esta zona de los productos de la meteorización superficial (arcillas, cuarzo).

·        El otro horizonte que se forma es el denominado “Horizonte C”, más profundo, en contacto directo con la roca más o menos meteorizada del sustrato, y compuesto mayoritariamente por fragmentos de ésta, acompañados por productos poco evolucionados de su meteorización.

Estos suelos primitivos AC son característicos de áreas sometidas a fuerte erosión, en las que no da tiempo al desarrollo de un suelo completamente estructurado, aunque también pueden tratarse de suelos jóvenes, en formación.

Cuando el suelo evoluciona durante un periodo de tiempo lo suficientemente largo se forma un nuevo horizonte:

·        El “Horizonte B” o de acumulación. Esta capa del suelo se origina como consecuencia de los procesos de intercambio que se producen entre los horizontes A y C: la migración de aguas, tanto descendentes (de infiltración de aguas de lluvia) como ascendentes (capilaridad, gradiente de humedad), hace que llegue a individualizarse este horizonte caracterizado por la acumulación de precipitados salinos (carbonatos, sulfatos).

Estos tres horizontes son los básicos y fundamentales que podremos encontrar en la mayor parte de los suelos comunes. En mayor detalle, es posible identificar otros horizontes, o subdividir éstos, pero no vamos a entrar en estos aspectos.

Figura 1.- Esquema mostrando el proceso evolutivo de formación de un suelo.

Formación de las arcillas en el suelo

Una cuestión importante en la formación del suelo es la génesis de los minerales más característicos del mismo: las arcillas. En concreto, la formación de los minerales de la arcilla en este ambiente está íntimamente ligada a reacciones de hidrólisis de los minerales silicatados de las rocas. Estas reacciones pueden desarrollarse en el medio hidrotermal (durante la formación de un depósito mineral), o como procesos exógenos (bajo condiciones atmosféricas), una vez que las rocas por erosión se encuentran en la superficie o su proximidad. El CO2 disuelto en el agua de lluvia o de los ríos puede desencadenar una serie de procesos hidrolíticos:

CO2 + H2O ® H2CO3

El ácido carbónico así formado reacciona con los feldespatos, induciendo la formación de minerales del grupo de la arcilla. A continuación ilustramos este tipo de reacciones con tres ejemplos conducentes a la formación de caolinita, Al2Si2O5(OH)4:

1)      Hidrólisis de anortita (plagioclasa cálcica):

CaAl2Si2O8 + 2 H2CO3 + H2O ® Ca2+ + 2 HCO3- + Al2Si2O5(OH)4

2)      Hidrólisis de la albita (plagioclasa sódica):

2 NaAlSi3O8 + 2 H2CO3 + 9 H2O ® 2 Na+ + 2 HCO3- + Al2Si2O5(OH)4 + 4 H2SiO4

3)      Hidrólisis de la ortoclasa (feldespato potásico):

2 KAlSi3O8 + 2 H2CO3 + 9 H2O ® 2 K+ + 2 HCO3- + Al2Si2O5(OH)4 + 4 H2SiO4

El clima, a través de los parámetros de humedad y temperatura, controla fuertemente el proceso formador de arcillas a partir de los silicatos. Así, en condiciones de humedad y calor la hidrólisis dará lugar a arcillas caoliníticas e incluso a un residuo final de gibbsita, Al(OH)3. Por el contrario, en climas áridos la arcilla predominante resulta ser del tipo illita-esmectita. Cabe destacar, no obstante, que el mundo de los procesos formadores de arcillas es extraordinariamente complejo, por lo cual lo anteriormente dicho tiene que ser tomado únicamente en el contexto de una simplificación didáctica. Las figuras adjuntas ilustran la complejidad de variables implicadas.

Figura 2.- Mineralogía formada en el suelo en función de la precipitación sobre el mismo.

Figura 3.- Tipos y espesores característicos de suelos formados en las distintas

zonas climáticas.

Mineralogía y físico-química del suelo

Como consecuencia del proceso de edafogénesis tenemos un suelo estructurado, en el que cada capa u horizonte presenta unas peculiaridades composicionales, tanto en lo que se refiere a sus componentes mineralógicos como en su textura, y físico-química. Estos componentes pueden ser los siguientes:

Minerales

Los minerales que componen el suelo pueden ser tan variados como lo sea la naturaleza de las rocas sobre las que se implanta. No obstante, hay una tendencia general de la mineralogía del suelo hacia la formación de fases minerales que sean estables en las condiciones termodinámicas del mismo, lo cual está condicionado por un lado por el factor composicional, y por otro por el climático, que condiciona la temperatura, la pluviosidad, y la composición de las fases líquida y gaseosa en contacto con el suelo.

De esta forma, los minerales del suelo podrán ser de dos tipos: 1) heredados, es decir, procedentes de la roca-sustrato que se altera para dar el suelo, que serán minerales estables en condiciones atmosféricas, resistentes a la alteración físico-química; y 2) formados durante el proceso edafológico por alteración de los minerales de la roca-sustrato que no sean estables en estas condiciones. Los más importantes, y los condicionantes para su presencia en el suelo serían los siguientes:

ü             Cuarzo. Es un mineral muy común en los suelos, debido a: 1) su abundancia natural en la mayor parte de las rocas; y 2) su resistencia al ataque químico. El cuarzo confiere al suelo buena parte de su porosidad, debido a que suele estar en forma de granos más o menos gruesos, lo que permite el desarrollo de la porosidad intergranular. Además, es un componente muy inerte, muy poco reactivo, del suelo.

ü             Feldespatos. Suelen ser componentes minoritarios, heredados o residuales de la roca sobre la que se forma el suelo, pues son metaestables en medio atmosférico, tendiendo a transformarse en minerales de la arcilla. Al igual que el cuarzo, conforman la fracción arenosa del suelo, si bien en este caso le confieren una cierta reactividad.

ü             Fragmentos de roca. Junto con los dos componentes anteriores, conforman la fracción comúnmente más gruesa del suelo, si bien es este caso el tamaño de fragmentos suele ser superior a 2 cm, de forma que el cuarzo y feldespatos suelen constituir la fracción arenosa del suelo, mientras los fragmentos de roca constituyen la fracción de tamaño grava. La naturaleza de los fragmentos está directamente relacionada con la de la roca sobre la que se forma, si bien ocasionalmente el suelo puede contener fragmentos de origen “externo”, como consecuencia de procesos de transporte y depósito contemporáneos con la formación del suelo. En cualquier caso, son siempre heredados, y nos permiten identificar si el proceso de edafogénesis ha tenido o no aportes externos.

ü             Minerales de la arcilla. Son minerales también muy abundantes en el suelo, constituyendo la matriz general del mismo, la componente intergranular entre la fracción arenosa y los fragmentos de roca. Son minerales que proceden de la alteración de los que componen la roca sobre la que se producen los procesos de meteorización, y en función de ello pueden ser muy variados: 1) la illita (equivalente arcilloso de la mica blanca, moscovita), que se forma a partir de feldespatos y micas de rocas ígneas, sedimentarias o metamórficas; 2) la clorita, que se forma a partir de los minerales ferromagnesianos que pueda contener la roca: biotita, anfíbol, piroxeno, olivino; 3) la pirofilita, que puede formarse a partir de minerales ricos en aluminio en la roca original; 4) menos comunes son los filosilicatos del grupo de las arcillas especiales (esmectita-bentonita, sepiolita, palygorskita), que se forman bajo condiciones climáticas muy específicas, o a partir de rocas de composición muy determinada, y que por sus características especiales confieren al suelo propiedades mecánicas diferentes a las habituales (suelos expansivos, suelos instables). Los minerales de este grupo juegan un papel muy importante en la textura y en la físico-química del suelo, pues le confieren plasticidad, impermeabilidad, así como otras propiedades mecánicas y de relación entre el suelo y el agua que contiene, en especial en cuanto a la capacidad de sorción e intercambio iónico que pueda presentar.

Por su parte, determinadas arcillas, como sepiolita y palygorskita (arcillas fibrosas) poseen estructuras cristalinas tipo túnel, que pueden albergar cationes y moléculas de líquidos (agua y otros), a través de fenómenos de intercambio iónico con Ca y Mg, y agua ceolítica, lo que hace que la presencia en el suelo de estas arcillas aumente su capacidad de retención de contaminantes.

ü             Carbonatos. Los carbonatos son minerales frecuentemente formados por el proceso de edafogénesis, aunque debido a su alta solubilidad su acumulación no suele producirse en el horizonte más superficial. De hecho, los carbonatos pueden formarse en los horizontes A o C, pero su acumulación efectiva se produce solo en el horizonte B o de acumulación, como consecuencia de los procesos de intercambio que se producen en el mismo. Una excepción corresponde a los suelos de regiones de climatología semiárida y con abundantes rocas carbonatadas. En estas regiones, los procesos de intercambio con el suelo suelen ser “en ascenso”: las aguas subterráneas ricas en carbonatos ascienden hasta la superficie del terreno por capilaridad o por gradiente de humedad, depositando ahí los carbonatos, y originando los denominados “caliches”, auténticos escudos que recubren la superficie del suelo, como por ejemplo ocurre en buena parte de La Mancha.

ü             Óxidos e hidróxidos de hierro y aluminio. Los óxidos e hidróxidos de Fe3+ (y a menudo los de aluminio y los de manganeso) son minerales que se suelen acumular en el suelo como consecuencia de procesos de alteración de otros minerales, constituyendo la fase estable del hierro en superficie o condiciones cercanas a la superficie. Se acumulan en forma de agregados: 1) limonita (agregado de óxidos e hidróxidos de Fe), 2) bauxita (de óxidos e hidróxidos de aluminio); y 3) wad (óxidos e hidróxidos de manganeso). Desde el punto de vista estrictamente químico son muy estables, poco o nada reactivos, pero presentan propiedades sorcitivas que hacen que su presencia en el suelo tenga implicaciones físico-químicas notables. En concreto, los óxidos de Mn poseen propiedades interesantes de captación de cationes. Entre éstos caben destacar los óxidos tetravalentes criptomelana, todorokita, litioforita y birnessita. Los dos primeros presentan estructuras cristalinas tipo túnel, mientras que litioforita y birnessita la presentan en capas. Todos estos óxidos de Mn están basados en unidades tetraédricas de MnO6, que comparten vértices o aristas. En las estructuras tipo túnel se pueden introducir los cationes tipo Co2+, Ni2+ y Cu2+ en las posiciones octaédricas, y poseen propiedades de intercambio catiónico, vacancias y posiciones octaédricas capaces de absorber y estabilizar cationes. En cuanto a las estructuras en capas, es posible que cationes tipo Co2+ sustituyen al Mn en las posiciones octaédricas de MnO6.

ü             Sulfatos. La presencia de sulfatos en el suelo suele tener la doble vertiente de que pueden ser minerales relativamente comunes. Sin embargo, al ser compuestos de solubilidad relativamente alta, su acumulación efectiva solo puede producirse bajo condiciones muy determinadas: abundancia de sulfatos (p.ej., yesos) en el entorno inmediato, y clima árido o semiárido. En estas condiciones, y al igual que los carbonatos, los sulfatos podrán acumularse en el horizonte B, o en el A, en este segundo caso en forma de costras o eflorescencias (rosas del desierto).

ü             Otros minerales. Aparte de los descritos, el suelo puede contener una amplia gama de minerales, en unos casos heredados, en otros formados, todo ello en función de los condicionantes ya mencionados: naturaleza de la roca-sustrato, y factores climáticos. Su importancia e interés pueden ser muy variables.

Agua en el suelo

Con la excepción de las regiones extremadamente áridas, el agua es siempre un componente del suelo, encontrándose en éstos en forma de humedad intergranular o como hielo (suelos tipo permafrost), en mayor o menor abundancia en función de factores diversos. Debido a la propia dinámica del suelo, el agua siempre contiene componentes diversos en solución, y ocasionalmente también en suspensión, si bien la ausencia de una dinámica de consideración minimiza este último componente.

En función de la naturaleza y textura del suelo el agua puede encontrarse bien como fase libre, móvil en el suelo (en suelos con altas porosidades y permeabilidades), o bien como fase estática (ab/ad sorbida), en los suelos de naturaleza más arcillosa. En el primer caso el agua podrá tener una cierta dinámica, que mantendrá una cierta homogeneidad composicional, mientras que en el segundo caso podrán darse variaciones composicionales más o menos importantes.

El agua en el suelo suele tener una dinámica bidireccional: el agua de lluvia o de escorrentía, por lo general poco cargada en sales (aunque no siempre), se infiltra desde superficie, y puede producir fenómenos de disolución, hidrólisis y/o precipitación de las sales que contiene. Por ejemplo, el CO2 atmosférico induce la formación de ácido carbónico: CO2 + H2O ® H2CO3, que a su vez induce la disolución de carbonatos: CaCO3 + H2CO3 ® Ca2+ + 2HCO3-. En épocas secas se produce el fenómeno inverso, y las aguas contenidas en los acuíferos tienden a subir por capilaridad o por gradiente de humedad hasta la superficie, donde se produce su desecación, de forma que durante este proceso de ascenso tienden a perder por precipitación las sales que contienen en disolución. Este proceso puede tener consecuencias desastrosas cuando interviene la mano del hombre, por ejemplo con irrigación de suelos en zonas áridas-semiáridas, con consecuencias de salinización extrema. Ejemplos dramáticos de estos fenómenos se encuentran en algunas regiones de Australia y se están comenzando a observar en Almería debido a la descontrolada actividad agrícola.

La composición del agua contenida en el suelo, en cuanto a su contenido en sales solubles (bicarbonatos, carbonatos, sulfatos, cloruros) estará condicionada, como la mineralogía, por factores de la litología del suelo y su entorno, y por factores climáticos. La proximidad de explotaciones mineras de minerales metálicos sulfurados condicionará por lo general un alto contenido en sulfatos, y a menudo en metales pesados.

Gases en el suelo

El suelo a menudo contiene gases, que pueden tener procedencias diversas: 1) aire atmosférico, que se infiltra desde superficie; 2) gas liberado durante alguna reacción, ya sea estrictamente química: CO2 liberado por la descomposición de carbonatos en medio ácido; o bioquímica: gases metabólicos de microorganismos: CH4, CO2; y 3) ocasionalmente puede contener también radón, gas noble radioactivo que se produce como consecuencia de la fisión natural de isótopos de potasio, torio o uranio, acumulándose sobre todo en los suelos de las áreas graníticas. Estos gases pueden encontrarse en disolución en el agua intersticial, no como fase libre.

Materia orgánica

La materia orgánica que contiene el suelo procede tanto de la descomposición de los seres vivos que mueren sobre ella, como de la actividad biológica de los organismos vivos que contiene: lombrices, insectos de todo tipo, microorganismos, etc. Muestreos realizados por el investigador suizo A. Stöcli en tierras de cultivo con una capa húmica estable han dado como resultado el siguiente promedio por m2 de seres vivos en su interior:

4 billones de bacterias y hongos

500.000 flagelados

200.000 ácaros

100.000 colémbolos

80.000 Enchytracide

80 lombrices de tierra

Lo que puede dar idea de la actividad biológica existente en una porción areal pequeña de suelo. Aparte de este componente biológico, en el suelo se produce la acumulación de los restos de estos seres vivos y de otros seres vivos (plantas y animales) que viven sobre su superficie, y cuya descomposición da origen a lo que se denomina humus. En la composición del humus se encuentra un complejo de macromoléculas en estado coloidal constituido por proteínas, azúcares, ácidos orgánicos, minerales, etc., en constante estado de degradación y síntesis. El humus, por tanto, abarca un conjunto de sustancias de origen muy diverso, que desarrollan un papel de importancia capital en la fertilidad, conservación y presencia de vida en los suelos. A su vez, la descomposición del humus en mayor o menor grado, produce una serie de productos coloidales que, en unión con los minerales arcillosos, originan los complejos organominerales, cuya aglutinación determina la textura y estructura de un suelo. Estos coloides existentes en el suelo presentan además carga negativa, hecho que les permite absorber cationes H+ y cationes metálicos (Ca2+, Mg2+, K+, Na+) e intercambiarlos en todo momento de forma reversible; debido a este hecho, los coloides también reciben el nombre de complejo absorbente.

Otro dato relevante con respecto a la materia orgánica es su afinidad por los metales pesados. Cuando éstos se encuentran en disolución, a menudo forman complejos orgánicos solubles, que pueden polimerizarse sobre los complejos moleculares del humus. También pueden formar directamente complejos insolubles con los compuestos del humus. De esta forma, la materia orgánica del suelo a menudo actúa como almacén de estos elementos, si bien puede transferirlos a la vegetación o a la fase acuosa si se produce su descomposición en medio ácido u oxidante.

Otro componente orgánico de los suelos es el ácido fúlvico, que es un tipo de ácido húmico débilmente polimerizado, que interviene en el proceso de podsolización. Junto con las arcillas y el hierro presentes en el suelo, este ácido forma complejos coloidales que por lixiviación son desplazados hasta cierta profundidad, donde finalmente floculan como consecuencia de actividad bacteriana.

Distribución de los componentes en los horizontes del suelo

Estos componentes que hemos visto se distribuyen por los diversos horizontes del suelo en función de su afinidad y de los procesos que dan origen a cada uno de ellos:

En el horizonte A los procesos predominantes suelen ser los de lavado y oxidación, de forma que suelen acumularse los componentes minerales más resistentes a la meteorización física, junto con los óxidos de hierro y afines. Además este horizonte se caracteriza por la acumulación de la materia orgánica, ya que es el sustrato de la actividad viva.

En el horizonte B se acumulan los componentes químicos precipitados como consecuencia de la dinámica característica de este nivel de intercambio. Los carbonatos, y ocasionalmente los sulfatos, suelen ser sus componentes mayoritarios, si bien en cada caso puede haber diferencias notables, en función de la litología de los materiales existentes en el área. Los componentes orgánicos raramente alcanzan este nivel, o lo alcanzan “per descensum”, en formas más o menos degradadas.

En el horizonte C no suele producirse acumulación como tal, sino procesos que degradan la mineralogía de la roca original. Por esta razón el horizonte C está formado mayoritariamente por fragmentos de roca cuya mineralogía está siendo sujeta a procesos más o menos avanzados de alteración.

Textura y estructura del suelo

La textura y la estructura del suelo son un reflejo de su organización interna, que a su vez es fundamental para comprender: 1) su comportamiento mecánico, y 2) su comportamiento físico-químico ante la infiltración de los contaminantes, sean éstos de origen antropogénico o no. Los factores que influyen en la textura y estructura son

La granulometría tiene una influencia decisiva, puesto que puede variar desde una gran homogeneidad en tamaño de grano arenoso, hasta la homogeneidad en tamaño arcilloso, lo cual tiene un reflejo en una variabilidad entre texturas arenosas, de alta porosidad y permeabilidad, hasta texturas arcillosas, desprovistas de porosidad efectiva y de permeabilidad.

La composición mineralógica está en buena parte relacionada con la granulometría: la componente de tamaño inferior a 2 mm es, por definición, de naturaleza arcillosa. La composición concreta de esta componente arcillosa influye en el comportamiento mecánico, lo que se traduce también en el en aspecto textural. Así, en suelos en los que predomina un componente mineral no reactivo (p.ej., cuarzo) la carga catiónica o aniónica de las aguas de infiltración permanecerá inalterada. Sin embargo, los suelos reactivos (p.ej., con altos contenidos en carbonatos o en arcillas) pueden inducir cambios importantes en el contenido metálico y pH de las aguas (precipitación de cationes, alcalinización del agua). Por otra parte, algunas arcillas (p.ej., las esmectitas) tienen la capacidad de incorporar cationes entre sus capas, inmovilizándolos, e incluso de catalizar reacciones.

La humedad confiere al suelo fundamentalmente plasticidad, sobre todo si va acompañada de un alto contenido en arcillas. Su ausencia produce la desecación del suelo, que implica por un lado la posibilidad de que éste se agriete por retracción, y por otro, de que se produzca la precipitación de sales.

La materia orgánica, que favorece la formación de agregados minerales (“terrones”). Por otra parte, este componente posee importantes propiedades químicas que pueden inducir la inmovilización de cationes en disolución. Un caso notable es la incorporación de Hg(II) a la matriz de ácidos orgánicos (húmicos, fúlvicos).

Con estos factores como parámetros de control, la textura viene definida en realidad por las relaciones relativas, porcentuales, de las fracciones granulométricas (figura 4).

Figura 4.- Esquema de clasificación textural del suelo.

La determinación de la textura puede hacerse también mediante el denominado “Densímetro de Boyoucos”. Este procedimiento es muy utilizado en edafología. Se toman 20 g de suelo (molido y tamizado a un tamaño menor de 2 mm) y se tratan con una solución dispersante de Hexametafosfato sódico y Na2CO3. El suelo, tratado con 10 ml de la solución dispersante y una cierta cantidad de agua, se deposita en frascos de cierre hermético y se agita durante unos 15 min, y con posterioridad se pasa 1 min por ultrasonidos. A partir de ahí se añade la mezcla a una probeta de 1 litro, enrasando y agitando manualmente durante 1 minuto de manera vigorosa. Al finalizar la agitación cronometraremos: 1) se introduce el densímetro transcurridos los 40 primeros segundos tras la agitación, también se realiza lectura de la temperatura. Esta es la medida correspondiente a la fracción LIMO + ARCILLA; 2) transcurridas 2 horas desde la agitación, se procede a la lectura de la densidad y temperatura de la fracción ARCILLA. Lo restante se corresponde con la fracción LIMO. Para la realización de los cálculos aplicaremos la fórmula:

 

 

            d= lectura del densímetro

t= temperatura

 

                       

Por su parte, la estructura depende del conjunto de los factores considerados, y describe la forma de agregarse de las partículas individuales del suelo en unidades de mayor tamaño (agregados) y el especio de huecos asociado. Así, la estructura se describe atendiendo al grado, forma y desarrollo de los agregados. Si no presenta agregados, se dice que el suelo (u horizonte) no presenta estructura, o que ésta es continua (Figura 5). La forma de los agregados puede ser prismática, columnar, laminar, o en bloques, y éstos a su vez pueden ser angulares, subangulares, granulares, etc. (Figura 6).

Figura 5.- Aspecto del suelo, en función de su estructura.

Figura 6: Tipos de estructura

Clasificación de suelos

La clasificación de suelos es un tema complejo y controvertido, existiendo en la actualidad un gran número de clasificaciones de mayor o menor desarrollo, y basadas en criterios muy diversos. Una clasificación básica y extendida en textos generales es la que establece dos grandes grupos: suelos zonales (condicionados por la climatología, y por tanto, característicos de determinadas zonas del planeta) y suelos azonales (condicionados más bien por la litología del sustrato).

En la actualidad, la más usual es la de FAO/UNESCO de 1990, que establece una clasificación básica con 28 Grupos Principales de Suelos, en la que la gran mayoría de los nombres terminan en "sol" (soles, en plural) y le antecede un prefijo que corresponde a un importante carácter del suelo. También establece un segundo nivel, que corresponde a 152 Unidades de Suelos (FAO, 1990). El nombre de estas Unidades de Suelos está constituidos por dos palabras. La primera es la del Grupo Principal al que pertenecen y la segunda refleja el carácter principal que define a cada unidad y la diferencia del concepto central del Grupo Principal. Así, por ejemplo un suelo clasificado como Fluvisol dístrico sería un suelo perteneciente al Grupo Principal de los Fluvisoles, que son suelos de baja evolución condicionados por la topografía, formados a partir de materiales fluviales recientes, mientras que el término dístrico implica que tiene un grado de saturación en bases (por NH4OAc) menor del 50%, al menos entre 20 y 50 cm. de profundidad a partir de la superficie.

Otra clasificación muy seguida es la denominada “Soil Taxonomy”, establecida por el Soil Survey Staff de los Estados Unidos, y que identifica 11 grandes categorías.

TIPO

HORIZONTES, RASGOS CARACTERÍSTICOS

FERTILIDAD

DISTRIBUCIÓN

Vertisol

Ninguno. Alto contenido de arcilla hinchable

Buena

Pastizales de regiones estacionalmente secas (p.ej., India, Sudán, Texas)

Inceptisol

Incipiente; se forma en superficies de terrenos jóvenes

Variable

En todo el mundo; más común en regiones montañosas

Aridisol

Diferenciado, especialmente el horizonte de arcilla

Buena con riego

Regiones desérticas de todo el mundo

Mollisol

Diferenciado, con horizonte de gruesa superficie orgánica oscura

Excelente, especialmente para cereales

Grandes praderas, pampas argentinas, estepas rusas

Espedosol

Diferenciado, con concentraciones de materia orgánica, Al y Fe.

Buena, especialmente para trigo

Bosques septentrionales de Norteamérica y Europa

Entisol

Diferenciado, altamente lixiviado con horizonte de arcilla ácida

Deficiente, requiere fertilizantes

Subtrópicos húmedos, p.ej. SE de EEUU, India, SE asiático

Oxisol

No diferenciado, con tonos vivos rojos y amarillos debidos a minerales de Fe

Deficiente, requiere fertilizantes

Trópicos húmedos: cuencas del Amazonas y del Congo

Histosol

No diferenciado, drenaje deficiente, el más alto contenido en materia orgánica

Variable

Regiones húmedas, tanto frías (turberas) como cálidas

Características de los principales tipos de suelos establecidos en la Soil Taxonomy

 

Análisis del suelo

El análisis de un suelo plantea una problemática básica, que es saber para qué queremos conocerlo. Por ejemplo, si es para un estudio agronómico, necesitaremos saber qué nutrientes contiene, en qué forma, su granulometría, etc. Si es para construir una edificación o una vía de transporte, necesitaremos conocer su comportamiento mecánico y los factores que incluyen en el mismo. Si es, como es nuestro caso, para conocer su posible comportamiento frente a la acción de los contaminantes o de la de agentes descontaminantes, necesitaremos otra serie de datos. Así, el análisis del suelo es toda una ciencia que requiere la suma de técnicas muy diversas, cada una de las cuales tendrá más o menos importancia en cada caso concreto.

Las técnicas de análisis del suelo, como las de cualquier otro material geológico, pueden ser de tipo físico, físico-químico, o puramente químico.

Técnicas físicas

Son las que se basan en la medida de parámetros puramente físicos. Las más importantes desde el punto de vista ambiental son la composición mineralógica, la granulometría, la densidad y la porosidad. También pueden presentar cierta importancia en determinados casos otros parámetros como el volumen, la consistencia, el color y la temperatura.

La composición mineralógica se determina mediante técnicas microscópicas y Difracción de Rayos X (DRX). El estudio de los difractogramas de polvo o de muestras de agregados orientados permite establecer con bastante precisión qué minerales componen la muestra. El diagrama de polvo permite incluso establecer de forma aproximada, semicuantitativa, la proporción en que se encuentra cada mineral, pero solo permite establecer la proporción de filosilicatos (minerales de la arcilla) en su conjunto. El agregado orientado permite identificar de forma más precisa el tipo de minerales de la arcilla presentes en la muestra, y sus proporciones relativas.

La DRX es una técnica muy adecuada para la identificación y cuantificación aproximada de los minerales más abundantes en la muestra, pero problemática para minerales en proporciones bajas o muy bajas. Si necesitamos conocer la presencia de minerales en proporciones bajas, necesitaremos utilizar técnicas de concentración diferencial, que en cada caso podrán ser diferentes, en función de la o las propiedades diferenciales del mineral o minerales que nos interese identificar. Por ejemplo, métodos basados en densidad para minerales metálicos, métodos magnéticos para minerales férricos, etc.

La granulometría nos sirve para establecer de forma cuantitativa el tamaño de los granos que componen una muestra del suelo, que a menudo es un reflejo de otros caracteres de interés, como su porosidad y permeabilidad, comportamiento mecánico, etc.

La técnica básica para conocer la granulometría es el tamizado, que utiliza tamices seriados, con tamaños de apertura de malla decrecientes. Los tamaños que se emplean pueden ser muy variables, aunque se suelen seleccionar con algún criterio, que suele ser lineal o logarítmico. Existen distintas normalizaciones: Internacional: ISO-TC 24; en España, la UNE 7050; en Alemania, DIN 1171 o DIN 4148; en USA, ASTM; en Francia, AFNOR XII-501, etc.

Los resultados de la determinación granulométrica corresponden a los pesos de las diversas fracciones, que se expresan en forma porcentual frente al peso total de la muestra, y se representan o bien mediante diagramas de barras, o bien mediante histogramas acumulados (figuras).

Figura 7.- Histograma de barras, de frecuencias absolutas, referido a la granulometría de una muestra de suelo.

Figura 8.- Histograma de líneas, de frecuencias acumuladas, de la granulometría

de una serie de muestras.

Una problemática común en las muestras de suelos es el apelmazamiento, estos es, la formación de terrones. Estos suelen estar formados por minerales arcillosos, que al  formar parte de un terrón interpretamos como granos de tamaño considerablemente mayor. Por ello, es conveniente repasar la muestra con un rodillo de amasar antes de llevar a cabo el tamizado, o bien realizar éste “en húmedo”, deshaciendo los terrones con la ayuda de un frasco lavador. Sin embargo, este técnica solamente nos sirve para tamaños superiores a 0.037 mm (37 mm), y ya suele ser problemática por debajo de 60-63 mm, porque “satura” el tamiz. Por ello, para la granulometría de tamaños finos se utilizan otras técnicas adicionales. Entre ellas, las hay de carácter óptico, que se basan el análisis de imagen de las partículas en caída, o en difracción de luz o en análisis óptico mediante Rayos X. Estas técnicas ofrecen la posibilidad de establecer granulometría a tamaños hasta del orden de la micra.

La densidad que se mide en los suelos corresponde en realidad a dos parámetros:  densidad real y aparente. La real corresponde a la densidad media de la fase sólida del suelo, mientras que la aparente es la que puede medirse directamente, esto es, masa por unidad de volumen, siendo éste el volumen total de la muestra, incluyendo los huecos que contenga. Por lo tanto, esta densidad es sistemáticamente menor que la real.

La porosidad de un suelo o roca es su propiedad de presentar huecos, poros o fisuras. Se expresa por el porcentaje de volumen poroso respecto al volumen total de suelo o roca (porosidad total o bruta). Además de esta porosidad total, se define como porosidad útil la correspondiente a huecos interconectados, es decir, el volumen de huecos susceptibles de ser ocupados por fluidos. Este concepto de porosidad útil está directamente relacionado con el de permeabilidad. La porosidad útil es, en general, inferior en un 20-50% a la total, dependiendo, sobre todo, del tamaño de grano del suelo. Cuanto menor sea este tamaño de grano, más baja será la porosidad útil respecto a la total. También influye la forma de los granos. La diferencia entre porosidad total y porosidad útil expresa el agua (o fluido en general) inmovilizada en el suelo, y recibe la denominación de "agua irreductible".

La consistencia corresponde a la resistencia del suelo a la deformación y a fluir bajo la acción de fuerzas mecánicas. El grado de humedad del suelo tiene una influencia decisiva en este parámetro, por lo que es necesario determinarla en mojado (saturada en agua), en húmedo (con un bajo contenido en agua) y en seco.

El color es un parámetro cuyo interés es indirecto, pues constituye un reflejo de otros parámetros físicos, como la composición mineralógica, o químicos, como el contenido en óxidos de hierro o en materia orgánica. Se determina de forma comparativa, mediante la “Carta de Color del Suelo”.

Parámetros físico-químicos

Son aquellos basados en determinaciones físicas sobre propiedades con implicaciones químicas. Los más importantes son los relacionados con la capacidad de intercambio iónico, la reactividad del suelo (pH), y el potencial redox (Eh).

La capacidad de intercambio es una propiedad por la cual aniones o cationes del agua pueden intercambiarse con los aniones o cationes contenidos en los minerales del suelo con que está en contacto. Tal como queda planteado en la definición, esta propiedad está relacionada con la composición mineralógica, puesto que serán determinados minerales presentes en el suelo los que tendrán en realidad esta capacidad. En concreto, los minerales susceptibles de intercambio iónico son las ceolitas (poco frecuentes en los suelos) y determinadas arcillas, sobre todo las del grupo de la esmectita (bentonitas), así como algunos óxidos e hidróxidos de hierro y manganeso. Se determina mediante un procedimiento estándar, que permite conocer este parámetro, que se expresa en miliequivalentes por gramo (meq/g) (capacidad alta) o meq/100g (capacidades normales en el suelo).

La reactividad del suelo es su capacidad de reacción química, y se traduce en dos aspectos: acidez y alcalinidad, expresados a través de su pH. Es un parámetro especialmente importante en un entorno minero, pues por un lado puede ser el reflejo del grado de contaminación del suelo, y por otro puede implicar un potencial neutralizador o amortiguador de éste frente a determinados procesos: suelos alcalinos frente a ataque ácido, o viceversa.

La medida del pH no es directa, puesto que el concepto se refiere a la reactividad de un líquido. En realidad el pH del suelo es el de su fracción líquida, o de un líquido en equilibrio con el suelo. Por ello, existen distintas formas de medirlo, y en el detalle, distintos parámetros medibles (pH en agua, pH en KCl).

El potencial redox expresa la tendencia del suelo a oxidar o a reducir. Está relacionado con la composición mineralógica y con la presencia de materia orgánica. La tendencia de los minerales del suelo hacia su oxidación o su reducción son los responsables de la tendencia general del suelo. Se expresa mediante el Eh, que mide este potencial en voltios, expresando la disponibilidad de electrones, de forma que a mayor potencial, mayor poder oxidante. La figura adjunta muestra las relaciones entre Eh y pH que pueden darse en relación con el agua contenida en el suelo, y el campo de estabilidad de ésta a 25ºC.

Figura 9.- Diagrama Eh-pH para las aguas naturales.

Análisis químico

El análisis químico del suelo puede incluir una gran variedad de apartados, y puede llevarse a cabo mediante técnicas muy variadas, tanto clásicas como instrumentales. Los tipos de análisis químicos más frecuentes son:

Análisis de contenido en materia orgánica (MO). Es uno de los más realizados, puesto que tiene importancia tanto para estudios agronómicos, como para estudios ambientales, ya que la materia orgánica a menudo actúa, a través de la formación de los compuestos organometálicos, como trampa para la inmovilización de metales pesados.

Su determinación puede realizarse mediante técnicas diversas, aunque las más utilizadas son las que se basan en la valoración de reacciones de oxidación de la MO total mediante reactivos oxidantes, como puede ser el permanganato de potasio o el dicromato de potasio. También es posible su determinación indirecta a partir del contenido total en carbono de la muestra, mediante técnicas instrumentales.

El análisis geoquímico total consiste en establecer su composición de acuerdo con los criterios del análisis geoquímico de rocas, es decir, estableciendo el contenido porcentual en los elementos mayores expresados como óxidos (SiO2, Al2O3...), en elementos menores, que también se expresan como óxidos (MnO, P2O5), y el contenido en elementos trazas (expresados en partes por millón [ppm] o partes por billón [ppb]) que se consideren de interés para nuestro caso concreto. Suele ser necesaria la combinación de varias técnicas instrumentales para llevar a cabo este tipo de análisis: los elementos mayores y menores pueden analizarse por ejemplo mediante Fluorescencia de Rayos X, mientras que para los elementos traza hay una gran variedad de técnicas que pueden ser más o menos adecuadas para cada elemento. Una de las más empleadas, por su bajo coste por elemento, es la espectrometría de plasma ICP. Mayor precisión y exactitud ofrece la espectrometría de absorción atómica, aunque a mayor coste.

Análisis del agua contenida en el suelo. A menudo es un dato de gran interés para estudiar las condiciones de equilibrio entre agua y suelo, incluyendo el potencial de paso de los diversos cationes, entre ellos los metales pesados, del suelo a la fase líquida. Un problema importante suele ser la captación de este agua del suelo, que suele resolverse mediante unas cápsulas de cerámica porosa. Estas se entierran durante un tiempo en el suelo hasta que entra en las mismas una cierta cantidad de agua. Una vez captada, el tipo de análisis a realizar será variable en función del problema planteado.

Otros análisis pueden ser tan variados como nuestras necesidades. Puede ser necesario detectar contaminantes orgánicos específicos en el suelo, para lo que se emplearán técnicas instrumentales específicas tales como la cromatografía o colorimetría.

Suelo y Salud humana

El suelo, como soporte de las actividades agrícolas y ganaderas, pero también como filtro natural de las aguas de infiltración, tiene una influencia indirecta en la salud humana. La contaminación del suelo puede transmitirse, como veremos en el tema correspondiente, a la flora y fauna, que a menudo son parte de nuestra dieta, y a las aguas superficiales y subterráneas, produciendo la problemática que hemos visto en el tema anterior.

Por otra parte, la contaminación del suelo produce efectos directos en el mismo, sobre todo en lo que se refiere a su productividad. Por ejemplo, las sales cloruradas, que puedan proceder de vertidos mineros, causan la esterilidad del suelo frente a la producción vegetal. El pH excesivamente alto o excesivamente bajo, producido o no por mecanismos de origen minero, puede igualmente producir este fenómeno. Ello no afecta directamente a la salud humana, pero sí al desarrollo económico y social.

En cualquier caso, lo normal es que las zonas que han estado sujetas a actividades mineras que implican procesos de metalurgia extractiva, presenten diversos grados de contaminación por metales pesados y otros contaminantes. Como hemos dicho anteriormente, dicha contaminación queda normalmente fijada en los suelos del entorno de la explotación minera. En este caso, lo importante es decidir si esa contaminación presenta o no un riesgo de salud pública o para el medioambiente. Aquí resulta clave tratar el problema del uso final de la tierra: agricultura, ganadería, vivienda, esparcimiento, etc.

Si los suelos presentan contaminación, resulta obvio que los contaminantes acabarán tarde o temprano afectando a la gente. Por esa razón resulta vital estimar “cuanto”, y “por cuanto tiempo”. Por ejemplo, no es lo mismo una exposición a un determinado tipo de contaminante durante horas, días, meses o años. Como vimos en otro capítulo sobre salud y agentes tóxicos, hay metales que se acumulan en el organismo.  En cualquier caso, las concentraciones y tiempos máximos de exposición están fijadas por las legislaciones regionales, nacionales, o supranacionales.

Citábamos antes cuatro posibles usos del suelo, agricultura, ganadería vivienda y esparcimiento. Los riesgos asociados son diferentes.  En el primer caso resulta  evidente que algún grado de absorción del contaminante por parte de las plantas existirá. Tendremos por tanto que determinar “cual” es el grado de absorción de dicho tóxico por la planta, y en que parte de ella se concentra. Aclaremos que no todas las plantas concentran igual, y que la distribución del contaminante en estas varía. En algunos casos este puede concentrarse en las raíces, en otro en las hojas, o en los tallos. Por otra parte, si los suelos presentan algún grado de contaminación por metales pesados y el ganado pasta sobre esos suelos, parte de los contaminantes entrarán en el organismo del animal. Queda por determinar, si dicho contaminante se acumula, cuanto se acumula y donde lo hace.

En el caso de viviendas la situación puede ser crítica, ya que como todos sabemos, el polvo es una constante en los hogares. Ese polvo puede provenir del entorno inmediato, como en el caso de las nuevas urbanizaciones construidas sobre terrenos destinados a otros usos previos. Si consideramos además que gran parte de las nuevas edificaciones son suburbanas, del tipo chalets, y que estos tienen jardines, tendremos que llegar a la conclusión que el uso previo de los suelos resulta una materia de la mayor importancia. El polvo puede constituir por lo tanto un vector de propagación de la contaminación por metales pesados en los hogares. Pero los riesgos no acaban en el polvo, substancias tóxicas como el mercurio pueden escapar de los suelos en forma gaseosa, infiltrándose en los hogares. Al respecto, y aunque rara vez se trata de una contaminación causada por el hombre, el gas radón, que emana naturalmente de  los substratos graníticos, constituye un factor de riesgo importante, que suele acumularse en los sótanos de las casas. Una buena ventilación de los mismos puede mitigar el problema. Sumemos finalmente a esto las infiltraciones en el sistema del agua potable.

En el caso de los parques (o áreas de esparcimiento en general) cabe avaluar el grado de exposición (y tiempo de la misma) que tendrán las personas en general, y los niños en particular. Recordemos que a estos, en particular a los más pequeños, les gusta jugar con tierra.

De esta manera tenemos que reconocer que los suelos contaminados constituyen un peligro potencial para un gran numero de actividades posibles. Obviamente la pregunta principal es ¿a qué llamamos un suelo contaminado? La respuesta depende de varios parámetros:

·        Del agente contaminante.

·        Del tipo de especiación del mismo.

·        De los valores máximos permisibles de este dependiendo del tipo de uso de la tierra.

Como comentábamos anteriormente estos parámetros son fijados por las autoridades pertinentes a través de la legislación correspondiente. Una vez que se  cuenta con esos datos, lo que cabe realizar es la evaluación del riesgo asociado a un suelo concreto en función del uso final del mismo. Para realizar este trabajo, el evaluador ambiental deberá realizar un muestreo del suelo. Como simplemente no es posible analizar toda la extensión de terreno a evaluar, habrá que fijar un sistema que ponga de relieve las características geológicas, mineralógicas, químicas y edafológicas del mismo, y contar con un procedimiento estadísticamente adecuado para la resolución del problema. Dado que las muestras serán pocas, necesitamos trabajar el problema mediante la teoría de las pequeñas muestras, y por lo tanto evaluar las medias mediante el uso de la t de Student. Consideremos el siguiente ejemplo:

Hemos tomado 8 muestras (n = 8), donde la concentración del contaminante es la siguiente:

Muestra

Concentración del contaminante

X1

80

X2

130

X3

210

X4

350

X5

160

X6

90

X7

120

X8

150

 

Supongamos ahora que la legislación indica que la concentración máxima aceptable es de “230”. A continuación realizaremos una serie de pasos para el establecimiento del intervalo de confianza de la media. Note que dado que el límite inferior no interesa (lo que nos preocupa son los valores máximos de contaminación), solo calcularemos el superior:

Media aritmética (x) = 161.25

Desviación standard (s) = 86.59

t de  Student[1] = 1.895 

Límite95 = x + t 5 s/ √n

              = 161.25 + (1.895 5 86.59)/ √8

              = 219.26

De esta manera el límite superior de las fluctuaciones de la media de la pequeña muestra está en 219.26, para un límite de confianza del 95%. Esto significa que valor medio del contaminante en los suelos muestreados se encuentra por debajo de lo que la legislación indica como valor máximo permitido (230), y por lo tanto la zona pasa el test..

Si el límite de confianza fuera superior (por ejemplo, al 99%), el límite superior del intervalo de confianza de la media también lo sería:

t de  Student[2] = 2.998

Límite99 = x + t 5 s/ √n

              = 161.25 + (2.998 5 86.59)/ √8

              =  253.03

En este caso vemos que las fluctuaciones de la media quedan por encima del valor recomendado (230) y por lo tanto la zona no pasa el test.

De esta manera, todo depende del límite que queramos escoger o que venga dado por la legislación vigente para el cálculo final. Examinemos ahora el mismo caso cambiando las condiciones a un muestreo aun más pequeño: 5 muestras.

Muestra (*)

Concentración del contaminante

X1

80

X4

350

X5

160

X6

90

X7

120

(*): misma numeración que en el ejemplo anterior

 

Media aritmética (x) = 160.0

Desviación standard (s) = 110.68

t de  Student[3]= 2.132

Para un límite de confianza del 95%:

Límite95 = x + t 5 s/ √n

              = 160.0 + (2.132 5110.68)/ √5

              = 265.53

En este caso estamos por encima del valor máximo estipulado (230) y por lo tanto, los datos no pasan el test.

Dado que se trata de la misma zona, pero con menos muestras, podemos observar directamente como el número de estas puede afectar sensiblemente el tipo de decisión a tomar.

Ante un resultado adverso las decisiones a tomar pueden ser de tres tipos:

·        Abandonar la zona.

·        Iniciar labores de remediación en la zona.

·        Aumentar el número de muestras para disminuir el grado de incertidumbre de la media.

Dado que las dos primeras pueden implicar un alto coste económico, la tercera parece la más razonable; ahora bien, si los resultados del test siguen siendo adversos, entonces habrá que pensar definitivamente en las opciones anteriores, y la elección entre una y otra será económica.

Bibliografía

ITGE (1995). Contaminación y depuración de suelos. Publicaciones del ITGE. 330 pg.

Porta, J.; López-Acevedo, M.; Roquero, C. (1999) Edafología para la agricultura y el medio ambiente. Ediciones Mundi-Prensa. 849 pg.

SEISnet - Sistema Español de Información de Suelos sobre Internet. http://leu.irnase.csic.es/microlei/microlei2.htm

Soil Survey Division, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions [Online WWW]. Available URL: "http://www.statlab.iastate.edu/soils/osd/" [Accessed 23 Mar 2001].http://www.statlab.iastate.edu/soils/index.html/

 

 



[1] Para un límite de confianza del 95%, n= 8 y por lo tanto 7 grados de libertad

[2] Para un límite de confianza del 99%, n= 8 y por lo tanto 7 grados de libertad

[3] Para un límite de confianza del 95%, n= 5 y por lo tanto 4 grados de libertad