UCLM Univesidad de Castilla-La Mancha

 

Diego J. Pedregal

Catedrático de Universidad en la ETSI Industriales de Ciudad Real
Departamento de Administración de Empresas de la Universidad de Castilla-La Mancha

Idioma: Es En        
Foto Diego Pedregal
Foto

Licenciado en Economía por la Universidad Autónoma de Madrid (Junio 1991).

IV Máster en Gasto Público y Programación Económica, en el Instituto de Estudios Fiscales (Junio 1992).

Doctor en Economía desde Abril de 1995 por la misma universidad, en el Departamento de Análisis Económico: Economía Cuantitativa.

Investigador Asociado en la Universidad de Lancaster, en el Reino Unido durante una estancia post doctoral de Septiembre de 1994 a Octubre de 1997.

Ex-miembro del grupo de Sistemas Dinámicos y Control del Centro de Investigación en Medio Ambiente y Estadística (CRES) de la Universidad de Lancaster.

Profesor asociado de la Universidad Autónoma de Madrid y contratado por el Banco del Comercio (grupo BBVA desde Octubre 1997 hasta Octubre de 1999.

Profesor en la ETSI Industriales de la Universidad de Castilla-La Mancha desde el 15/12/2000, titular desde 14/04/2002, catedrático desde 13/05/2009.

TEMAS DE INVESTIGACIÓN DE INTERÉS: series temporales, econometría, espacio de los estados, identificación de sistemas dinámicos, predicción.

 

DOCENCIA

Volver

PUBLICACIONES (capítulos de libro)

  • García, F.P. and Pedregal, D.J., (2011), "Digital filters for Maintenance Management", in: F.P. García (ed.), Digital Filters, InTech, Fijeka, Croatia.
  • Pedregal, D.J., Contreras, J., and Sánchez, A. (2010), "ECOTOOL: A general MATLAB Forecasting Toolbox with applications to Electricity Markets", in: P.M. Pardalos, M.V.F. Pereira, N.A. Iliadis, S. Rebennack and A. Sorokin(eds), Handbook of Networks in Power Systems, Springer Verlag.
  • Young, P.C., Pedregal, D.J. (2004), 'Environmental forecasting'. Encyclopedia of Environmetrics, editado por A.H. El-Shaarawi and W.W. Piegorsch (J. Wiley). http://www.wiley.com/legacy/wileychi/eoenv/pdf/Vaf007-.pdf
  • Pedregal, D.J., Young, P.C(2002), 'Statistical Approaches to Modelling and ForecastingTime Series'. En Clements, M. and Hendry, D. (eds.), Companion to Economic Forecasting (Blackwell Publishers), 69-104.
  • Young, P.C., Pedregal, D.J. (1997), 'Data-Based Mechanistic Modelling'. C. Heij et al. (eds.), System Dynamics in Economic and Financial models (J. Wiley, Chichester), 169-213.
  • Young, P.C., Pedregal, D.J. (1997), 'Comments on "Multivariate Structural Time Series Models" ' by A. Harvey and S. J. Koopman. C. Heij et al.(eds.), System Dynamics in Economic and Financial models(J. Wiley, Chichester), 291-293.

PUBLICACIONES (artículos)

  • Castillo, J.I., López, L. and Pedregal, D.J. (in press), 'How can the effects of the introduction of a new airline on a national airline network be measured? A time series approach for the Ryanair case in Spain', Journal of Transport Economics and Policy.
  • Castillo, J.I., Castro, M. and Pedregal, D.J. (in press), 'Can fear of going to jail reduce the number of road fatalities? The Spanish experience', Journal of Safety Research.
  • García, F.P., Pedregal, D.J., Roberts, C. (in press), 'New methods for the condition monitoring of level crossings', International Journal of System Science.
  • Leal, T., Pedregal, D.J. and Pérez, J.J. (2011), 'Short term monitoring of the Spanish government balance', Journal of the Spanish Economic Association (SERIEs), 2, 97-119.
  • Carnero, C., Pedregal, D.J. (2010), 'Modelling and forecasting occupational accidents of different severity levels in Spain', Reliability Engineering and System Safety, 95, 1134-1141.
  • Castillo, JI, Castro, M, Pedregal, DJ,  (2010), "An econometric analysis of the effects of the penalty points system driver's license in Spain", Accident Analysis & Prevention 42 (4): 1310-1319.
  • García, F.P., Pedregal, D.J., Roberts, C. (2010), 'Time Series methods applied to failure prediction and detection', Reliability Engineering & System Safety’, 95, 698-703.
  • Pedregal, D.J., Trapero, J.R. (2010), 'Mid-term hourly electricity forecasting based on a multi-rate approach', Energy Conversion and Management, 51, 105-111.
  • Pedregal, D.J., Pérez, J.J. (2010), 'Should quarterly government finance statistics be used for fiscal surveillance in Europe?, International Journal of Forecasting, 26, 794-807.
  • Leal, T., Pedregal, D.J., Pérez, J.J. (2010), 'Short-term monitoring of the Spanish government balance', SERIEs, DOI 10.1007/s13209-010-0018-3.
  • Onorante, L., Pedregal, D.J., Pérez, J.J., Signorini, S. (2010), 'The usefulness of infra-annual government cash budgetary data for fiscal forecasting in the euro area', Journal of Policy Modeling, 32, 98-119.
  • Trapero, J.R., Pedregal, D.J. (2009), 'Frequency domain methods applied to forecasting electricity markets', Energy Economics, 31, 727-735.
  • Pedregal, D.J., Dejuán, O., Gómez, N. y Tobarra, M.A. (2009), 'Modelling demand for crude oil products in Spain', Energy Policy, 37, 4417-4427.
  • Pedregal, D.J., Rivas, R., Feliu, V., Sánchez, L., Linares, A. (2009), 'A non-linear forecasting system for the Ebro River at Zaragoza, Spain', EnvironmentalModelling and Software, 24, 502-509.
  • Pedregal, D.J., Carnero, C. (2009), 'Vibration analysis diagnostics by continuous-time models: A case study', Reliability Engineering and System Safety, 94, 244-253.
  • Pedregal, D.J., García, F.P., Roberts, C. (2009), 'An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions', Annals of Operations Research, 166, 109-124.
  • Rivas, R., Feliu, V., Sánchez, L., Pedregal, D.J., Linares, A., Aguilar, J.V., Langarita, P. (2008), 'Identificación del primer tramo del canal principal de riego "Imperial de Aragón"', Ingeniería hidráulica en México, 23, 71-87.
  • Pedregal, D.J., Young, P.C. (2008), Development of improved adaptive approaches to electricity demand forecasting, Journal of the Operational Research Society, 59, 1066-1076.
  • García, F.P. and Pedregal, D. J.(2007). Applied RCM2 Algorithms Based on Statistical Methods, International Journal of Automation and Computing, 4, 109-116.
  • Pedregal, D.J., Trapero, J.R. (2007), 'Electricity Prices Forecasting by Automatic Dynamic Harmonic Regression Models', Energy Conversion and Management,48, 1710-1719.
  • Taylor, C.J., Pedregal, D.J., Young, P.C., Tych, W., (2007) 'Time series analysis and forecasting with the Captain toolbox', Environmental Modelling and Software, 22, 797-814.
  • García, F.P., Pedregal, D.J., Schmid, F., (2007), 'Unobserved Components models applied to theassessment of wear in railway points: a case study', European Journal of Operational Research, 176, 1703-1712.
  • García, F.P., Pedregal, D.J., (2007), 'Failure Analysis and Diagnostics for Railway Trackside Equipment', Engineering Failure Analysis, 14, 1411-1426.
  • Pedregal, D.J., Young, P.C. (2006), 'Modulated cycles, an Approach to Modelling Periodic Components from Rapidly Sampled Data', International Journal of Forecasting, 22, 189-194.
  • Pedregal, D.J., Carnero, C. (2006), 'State Space Models for Condition Monitoring. A case study', Reliability Engineering and System Safety, 91, 171-180.
  • Pedregal, D.J., García, F.P., Schmid, F. (2004), 'RCM2 Predictive Maintenance of Railway Systems Based on Unobserved Components Models', Reliability Engineering and System Safety, 83, 103-110.
  • Tych, W., Pedregal, D.J., Young, P.C., Davies, J. (2002), 'An unobserved component model for multi-rate forecasting of telephone call demand: the design of a forecasting support system', International Journal of Forecasting, 18, 673-695.
  • Pedregal, D.J., (2001), 'Book review: Tourism demand modelling and forecasting. Modern Econometric approaches, Haiyan Song and Stephen F. Witt (1999) (Elsevier Science Ltd.)', International Journal of Forecasting, 17, 297-299.
  • Pedregal, D.J., Young, P.C. (2001), 'Some comments on the use and abuse of the Hodrick-Prescott Filter', Review on Economic Cycles, II. http://www.uned.es/imaec2000/revista2/hp_final.pdf
  • Pedregal, D.J., (2001), 'Analysis of Economic Cycles Using Unobserved Components Models', Review on Economic Cycles, II. http://www.uned.es/imaec2000/articulos revista/revista2/pedregal.pdf
  • Pedregal, D.J., (2001), 'Trend Models for the Prediction of Economic Cycles', Review on Economic Cycles, III. http://www.uned.es/imaec2000/articulos revista/revista3/pedregal.pdf
  • Young, P.C., Pedregal, D.J., Tych, W. (1999), 'Dynamic Harmonic Regression', Journal of Forecasting, 18, 369-394.
  • Young, P.C., Pedregal, D.J. (1999), 'Recursive and En-Block Approaches to Signal Extraction', Journal of Applied Statistics, 26, 103-128.
  • Young, P.C., Pedregal, D.J. (1999), 'Macro-Economic Relativity: Government Spending, Private Investment and Unemployment in the USA', Structural Change and Economic Dynamics, 10, 359-380.
  • Young, P.C., Tych, W., Pedregal, D.J. (1998), 'Stochastic unobserved Component models for adaptive signal extraction and forecasting', Proceedings of Neural Networks for Signal Processing, VIII, 234-243.
  • Young, P.C., Pedregal, D.J. (1997), 'COMMENTS ON THE PAPER "An analysis of the international tourism demand in Spain", International Journal of Forecasting, 13, 551-556.
  • Young, P.C., Pedregal, D.J. (1996), 'Recursive Fixed Interval Smoothing and the Evaluation of LIDAR Measurements: A Comment on the Paper by Holst, Hössjer, Björklund, Ragnarsson and Edner', Environmetrics, 7, 417-427.
  • Pedregal, D.J., (1996),'Forecasting with STAMP', O.R. Insight, 9, No. 3, 29-32.
  • Young, P.C., Pedregal, D.J. (1996), 'SOFTWARE review: Bayesian analysis of time series (BATS)', International Journal of Forecasting, 12, 429-432.

Volver

CONTRIBUCIONES A PROYECTOS DE INVESTIGACIÓN

 

Volver

SOFTWARE

  • CAPTAIN (con P.C. Young, W. Tych, C.J. Taylor y Paul Mckenna), una toolbox de MATLAB para la predicción y análisis de series temporales de forma muy general. Incluye funciones para la descomposición de las series en componentes no observables, ajuste estacional, etc.
  • ECOTOOL (ECONometrics TOOLbox), una toolbox de MATLAB para el análisis de series temporales mediante modelos de Alisado Exponencial, ARIMA, Modelos de Componentes no Observables, con términos añadidos de Función de Transferencia y con detección automática de atípicos. Incluye también modelos VARX y Graphical User Interfaces útiles para la identificación, diagnosis y análisis de predicciones de los distintos modelos. Escribiendo ECOTOOLdemos(1) en la ventana de comandos de MATLAB se puede ver un extenso tutorial.
  • SSpace (State Space), una toolbox de MATLAB para la modelización avanzada y flexible de sistemas de Espacio de los Estados. Incluye plantillas para los modelos más habituales. Escribiendo SSpacedemos(1) en la ventana de comandos de MATLAB se puede ver un extenso tutorial.

Volver

ETSI Industriales, Edificio Politécnico, 13071 Ciudad Real Teléfono: +34 (9) 26 295430 FAX: +34 (9) 26 295361 - Ext.: 3810 Diego.Pedregal@uclm.es